2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

获取数据科学需要的数据

  • 2016-09-08
  • 本文字数:1679 字

    阅读完需:约 6 分钟

Lukas Vermeer 是一名经验丰富的数据科学专家,同时也是 Booking.com 试验部门产品负责人。他认为,数据科学和你需要的数据有关;决定收集、创建或保留什么数据是基础。真正的创新始于提出重大的问题,然后就很容易知道需要哪些数据才能找到你寻找的答案。在 GOTO 阿姆斯特丹 2016 大会上,Vermeer 探讨了数据科学与数据炼金术。

Christine Doig 是 Continuum Analytics 的高级数据科学家。她在文章“作为一门团队学科的数据科学”中将数据科学定义为:

我喜欢将 [数据科学] 想象成胶水,它将不同领域和思路粘合在一起,通常用于解决数据相关的问题,并将信息转换成知识和可行的见解。

在 InfoQ 文章“ 2016 年数据科学家将扮演什么角色”中,Ed Jones 解释了为什么大数据和数据科学很重要:

我们已经处在大数据时代,这是无法改变的事实。随着数据量与日俱增,从这些数据中提取出价值的工作只会慢慢变得更加复杂和困难。大数据经济背后的逻辑,正在以无法想象或预测的方式重塑我们的生活;我们做出的每一个电子操作都将产生数据,并留下与自己生活相关的蛛丝马迹。

Vermeer 表示,“我们希望检验一下,人们是否喜欢我们对网站所做的修改”。Booking.com 借助试验和其他形式的数据收集不断地改进他们的网站,创建更好的客户体验。

Vermeer 指出,“你可以拥有大量的数据,但如果你不知道能用它们干什么,那就没有用。”更多的信息并不一定形成更好的决策。数据科学和你需要的数据有关,通常,那和你拥有的数据不同。Vermeer 说,科学受数据所限,而数据为工程技术所限。你必须考虑如何创建所需的数据,以便能够取得进展。

在演讲中,Vermeer 使用了太阳系科学史上的例子。为了展示数据如何为工程技术所限,他回顾了天文学研究的一段历史。托勒密没有发现科里奥利效应和恒星视差,因为他没有足够准确的测量设备,而且这两种效应都非常微弱。除了其他因素之外,缺少证据让他得出了地球不动这个结论。对于托勒密而言,有关这两种效应的数据明显是受当时的工程技术所限。关于这一点,回顾过去更容易看出来,但同样适用于今天。

Vermeer 认为,模型并非必不可少,但如果它们有助于预测未来,就是有用的。可能有多个模型可以解释已有的数据。但你无法使用自己拥有的数据证明哪个模型正确。确定哪个模型更接近真相需要你收集新的数据。

Vermeer 提到了 Kaggle.com。这是一个数据科学家社区,从中你可以学到如何解决复杂的数据科学问题,结识其他的数据科学家。

你可以通过分析客户评论并查找关键词(比如可以表明人们喜欢或不喜欢旅馆的词语)进行情感分析。但是,你也可以在评论表单里提供两个输入框,一个用于输入人们喜欢的东西,一个用于人们不喜欢的东西。Vermeer 表示,这种方法就解决了数据收集时的情感分析问题。

Vermeer 建议考虑你能够创建的数据。如果这份数据与已有的数据部分重叠,你可以选择保留那份数据,或者在需要的时候重新创建。成本和风险(比如泄露个人身份信息(POII)数据)是决定保留或重建的两个主要原因。保留数据的成本显而易见。可能还有其他方面的考虑,这取决于现有的数据。

也会有你需要但是无法获得的数据。作为一种解决方案,你可以使用代理数据:和你需要的数据相关而又可以获得的数据,那样,你就可以用它替代需要的数据。

Vermeer 举了一个例子。Booking.com 举办了一个邮件发送活动,使用个性化设置向旅行者宣传旅游目的地。有些客户认为,邮件的措辞令人害怕,因为它让他们觉得,有人逐个分析了客户过去的购买记录,才提出了那样的建议。实际上,那些建议是基于一个机器学习模型,而不是人的判断。在下一次活动中,邮件文本重新措辞,在没有对预测模型做任何修改的情况下,效果提升了两倍。

Vermeer 表示,由于数据科学是一门科学,而不是炼金术,所以决定收集什么数据以及如何收集是基础步骤。

“犯了错,你能承担得起吗?”“你可以不知道吗?”这是演讲结束时 Vermeer 向听众提出的问题。他引用了伏尔泰的一句话:“判断一个人凭的是他的问题而不是他的回答。”如果人们提出的问题让我思考以前从未想过的东西,那很好,Vermeer 如是说。

查看英文原文 Getting the Data Needed for Data Science

2016-09-08 19:001954
用户头像

发布了 1008 篇内容, 共 420.0 次阅读, 收获喜欢 346 次。

关注

评论

发布
暂无评论
发现更多内容

2023-06-25:redis中什么是缓存穿透?该如何解决?

福大大架构师每日一题

redis 福大大架构师每日一题

Go 语言中 database/sql 是如何设计的

江湖十年

数据库 后端 Go 语言 数据库操作

集团公司该如何构建信息化系统?

优秀

信息化系统

强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)

汀丶人工智能

人工智能 深度学习 强化学习 6 月 优质更文活动

Java并行流指北

javalover123

并行 Java' 并行流

EMQ & 明道云:零代码高效构建工业物联网设备管理平台

EMQ映云科技

IoT 工业物联网 明道云

低代码应用搭建平台,基于低代码快速开发管理系统

互联网工科生

低代码 低代码开发 JNPF

基于smardaten无代码快速开发一个智慧城管系统

陈橘又青

无代码开发

谷歌推出“能讲会听”的大语言模型 AudioPaLM,实现语音理解和生成

Zilliz

谷歌 AIGC 大语言模型

3DCAT实时云渲染助力上海市乡村振兴可视化平台,展现数字乡村的魅力

3DCAT实时渲染

云渲染 数字孪生实时云渲染

C语言中.与->的用法介绍

芯动大师

官宣!2023云原生编程挑战赛正式启动

阿里巴巴云原生

阿里云 云原生 云原生编程挑战赛

对线面试官-Redis(作为缓存的一致性问题)

派大星

Java 面试题

如何扩展及优化CI/CD流水线?

SEAL安全

CI/CD 优化 扩展

实录分享 | Alluxio Operator一体化部署方案

Alluxio

分布式 operator Alluxio 大数据 开源 容器化部署

强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)

汀丶人工智能

人工智能 深度学习 强化学习 6 月 优质更文活动

建筑产业变革肇始,华为提笔写下新《营造法式》

脑极体

全屋智能

利用Flutter和小程序容器打造更强大的用户体验

FinFish

flutter 小程序 跨端开发 小程序容器 跨端框架

从幕后走到台前!过去十年,我们在阿里云如何建设可观测体系?

阿里巴巴云原生

阿里云 云原生 可观测

干掉Navicat?阿里Chat2DB来了!

王磊

Java 数据库

C语言实现单链表-增删改查

DS小龙哥

6 月 优质更文活动

表单设计领域天花板,表单引擎最全设计

codebee

镭速——简单、快速、自动备份数据到云端

镭速

App Store——OpenAI 的MaaS模式或将上线,与Microsoft、Salesforce 争To B客户

B Impact

OSPFv3:第三版OSPF除了支持IPv6,还有这些强大的特性!

wljslmz

OSPF 6 月 优质更文活动

AWS 亚马逊云科技 1 亿美金入局AIGC,哪些AI云服务已经可以对标微软、谷歌?

B Impact

SOFAStack 的下一个五年

SOFAStack

开源 SOFA 程序员 java

超越极限!80Gbps高速传输,让您的数据瞬间飞速传递

镭速

获取数据科学需要的数据_大数据_Ben Linders_InfoQ精选文章