写点什么

谷歌最新论文:利用 AI 在六小时内设计一款芯片

  • 2020 年 4 月 26 日
  • 本文字数:1823 字

    阅读完需:约 6 分钟

谷歌最新论文:利用AI在六小时内设计一款芯片

一直以来,芯片都是不少科技公司研发的重点,尤其在芯片市场竞争异常火热的今天。谷歌虽然依靠软件立身,但近些年却也一直在钻研芯片技术,TPU 就是一个不错的成果。今日,Google AI 负责人 Jeff Dean 在一篇预发表论文中,公布了一种基于机器学习的芯片设计方法,声称可以将设计流程缩减到 6 个小时,而常规的芯片设计往往需要数周甚至更久。



在由 Google AI 负责人 Jeff Dean 参与撰写的预发表论文中,Google Research 的科学家以及谷歌芯片实施与基础架构团队共同公布了一种基于机器学习技术的芯片设计方法,能够借鉴过往经验并随时间推移而不断改进设计能力,最终打造出更强大、质量更高的芯片方案。他们宣称,整个设计流程平均可在 6 个小时之内完成,时间周期远远短于常规人工研究的数周之久。


虽然这并不算是什么全新思路,但其真正实现源自今年 3 月谷歌工程师们在最新论文中提出的技术。更重要的是,这也表明处理器芯片上的晶体管排布设计将在很大程度上实现自动化。如果谷歌研究人员提出的这一技术能够公开使用,那么各类资金不足的初创企业也能够开发出属于自己的 AI 及其他专用类芯片。此外,整个行业的平均芯片设计周期也将显著缩减,使得硬件能够更好地适应快速发展的研究需求。


在去年底接受采访时,Dean 解释道:“基本上,以往的设计流程就是由研究人员利用一系列设计工具完成布局决策。听起来简单,但实际上布局与布线专家们需要使用这些工具进行一次又一次设计迭代。从初步设计,到将布局物理铺设在实体芯片上,到满足芯片项目的尺寸、功率与导线长度限制,再到符合所有协同设计师思路乃至现有制造工艺……这将是一个延续数周的艰辛过程。而现在,我们可以构建起一套机器学习模型,由其学习特定芯片中的布局与布线规则,最终快速生成可行的设计方案。”



随着训练的推进,Ariane 开源处理器的布局方式也在发生改变。左图为从零开始进行的训练策略,右图则为针对该芯片功能的预训练策略。每个矩形代表一个独立的宏放置位


论文作者们提出的方法,是将逻辑门、存储器等“排线表列”放置在芯片底板上,从而在优化功率、性能与面积(PPA)指标的同时,遵循当前芯片项目对于布局及布线密度的硬性要求。设计流程的规模范围非常灵活,从数百万节点到数十亿节点(这些节点将被归类至成千上万个簇内)皆可涵盖。一般来说,评估既定指标往往需要数小时到一天的时间。


研究人员还设计出一套框架,负责指导经过强化学习训练的代理优化芯片布局。(强化学习代理通过奖励摸索出最佳目标实现方式;在芯片设计案例中,代理将不断学习各类放置策略,探索如何实现奖励最大化。)在排线表列固定的前提下,AI 策略模型会根据当前节点 ID/ 排线表列以及半导体制造工艺等因素输出可行的芯片单元排布概率结果,并由估值模型估算当前放置方案的预期收益。


在实践当中,代理会在空芯片上依次放置组件,直到完成排线表列中的所有条目为止。更重要的是,只有代理的波长(与功率及性能相关)负加权总和与拥塞度(受排线密度限制)为负值时才会得到奖励。为了引导代理找出需要首先放置的组件,研究人员对组件按大小递减次序进行排序;首先放置较大组件,能够降低后续缺少充足放置空间的问题。



图注:训练数据大小与性能调优


要完成代理训练,研究人员需要创建一套包含 10000 种芯片布局的数据集,其中的输入内容为匹配特定放置要求的具体状态,标签则为放置奖励(即导线长度与拥塞度)。为了创建这套数据集,研究人员们首先选择了一种不同的芯片排线表列,而后利用 AI 算法为每种表列生成 2000 种不同的布局。


根据作者们的说明,他们在实验中发现,随着整体框架训练度的不断提升,训练速度开始持续加快并产出质量更高的结果。具体来看,与当前领先的基准水平相比,这项新技术在谷歌张量处理单元(TPU,由谷歌定制设计的 AI 加速器芯片)设计中带来了非常出色的 PPA 指标。


研究人员们总结道,“与当前从零开始为每一款新芯片优化布局设计的方法不同,我们的工作能够利用以往芯片设计经验加快设计速度,并随时间推移不断强化设计质量。此外,我们的这种新方法也能够直接优化特定指标,例如导线长度、密度与拥塞度等等,这就摆脱了传统方法中硬性定义相关指标近似值的局限。这套新方案不仅极大降低了芯片设计中的成本控制难度,同时也帮助我们根据特定芯片的实际需求权衡不同指标的相对重要程度(例如时限优先或者功率上限)。”


原文链接:


https://venturebeat.com/2020/04/23/google-claims-its-ai-can-design-computer-chips-in-under-6-hours/


2020 年 4 月 26 日 09:122942
用户头像
赵钰莹 InfoQ高级编辑

发布了 745 篇内容, 共 445.6 次阅读, 收获喜欢 2401 次。

关注

评论

发布
暂无评论
发现更多内容

使用更为安全的方式收集 Android UI 数据流,深入浅出Android

android 程序员 移动开发

全网唯一一份,从入门到精通的Android进阶学习笔记整理,Android应用层

android 程序员 移动开发

八年Android开发,从码农到架构师分享我的技术成长之路,共勉

android 程序员 移动开发

你知道App为什么会Crash吗?,Android性能优化之APK优化

android 程序员 移动开发

做android开发一直不相信35岁危机,好像被自己遇到了,9次Android面试经验总结

android 程序员 移动开发

做个酷炫的“锤子” 开关效果,kotlinwindows桌面开发

android 程序员 移动开发

八年老Android开发谈:垃圾中的战斗机,offer都发了(1)

android 程序员 移动开发

写代码还是做管理?安卓开发者的困扰,androidstudio记事本开发教程

android 程序员 移动开发

使用Google开源库AutoService进行组件化开发,移动应用开发课程设计心得

android 程序员 移动开发

使用 Kotlin API 实践 WorkManager,看完豁然开朗

android 程序员 移动开发

公司倒闭,面试被怼,闭关2个月拿下头条offer,flutter整合百度地图sdk

android 程序员 移动开发

关于Handler同步屏障你可能不知道的问题,已获万赞

android 程序员 移动开发

关于大厂Android面试必问的事件分发机制,应该没有比这篇讲的更好的了

android 程序员 移动开发

再见!onActivityResult!你好,看完你还觉得算法不重要

android 程序员 移动开发

使用 Flutter 快速实现聊天应用,计算机移动应用开发

android 程序员 移动开发

八年Android开发,从码农到架构师分享我的技术成长之路,共勉(1)

android 程序员 移动开发

八年老Android开发谈:垃圾中的战斗机,offer都发了,Android大厂面试真题解析大全

android 程序员 移动开发

区块链赋能“双碳”战略,为绿色发展提供强劲动力!

CECBC

使用C#创建,查看,2021大厂Android面试题精选

android 程序员 移动开发

质量基础设施一站式服务平台,NQI云服务平台搭建

电微13828808271

全面解析Android事件分发机制:一篇足矣!,Alibaba高并发业务实战文档

android 程序员 移动开发

做了6年Android开发,你会的还只有初级工程师的技术吗?

android 程序员 移动开发

关于拼多多被曝删除用户本机照片的一点想法,flutter弹窗页面缩小

android 程序员 移动开发

超大规模天线还能给5G带来什么?

脑极体

你确定自己学会了自定义MarqueeView?这个你会吗?进来看看吧

android 程序员 移动开发

做了三年Android,公司发不出工资了,怎么办,阿里、腾讯大厂Android面试必问知识点系统梳理

android 程序员 移动开发

全网热议:Android 在未来是否会走向终结?,android路由实现

android 程序员 移动开发

六年 Android 开发的涨薪之路,从15K涨到30K的面试解析

android 程序员 移动开发

内存优化(二),kotlin协程原理

android 程序员 移动开发

Windows 做iPhone上小程序的自动化

IT蜗壳-Tango

11月日更

你告诉我太卡了,那是你不晓得性能优化之app卡顿优化,销售应届毕业生的面试题

android 程序员 移动开发

谷歌最新论文:利用AI在六小时内设计一款芯片-InfoQ