写点什么

不要再让数据科学家管理 Kubernetes 集群了

  • 2020-02-21
  • 本文字数:2143 字

    阅读完需:约 7 分钟

不要再让数据科学家管理Kubernetes集群了

本文内容基于我对机器学习团队的观察,而不是对该行业的学术调查。我是Cortex的贡献者,这是一个用于在生产环境中部署模型的开源平台。生产级机器学习有一个组织性的问题,这是因为它相对还比较新。虽然更成熟的领域(例如 Web 开发)经过几十年的发展已经有了最佳实践,但是生产级机器学习还没有。如果我们希望未来以 ML 为基础的软件真正普及开来,那么消除基础设施瓶颈就至关重要——要做到这一点,我们需要将其真正的专门化,让数据科学家专注于数据科学。


本文最初发布于 Towards Data Science 博客,经原作者授权由 InfoQ 中文站翻译并分享。


声明:以下内容基于我对机器学习团队的观察,而不是对该行业的学术调查。我的背景:我是Cortex的贡献者,这是一个用于在生产环境中部署模型的开源平台。


生产级机器学习有一个组织性的问题,这是因为它相对还比较新。虽然更成熟的领域(例如 Web 开发)经过几十年的发展已经有了最佳实践,但是生产级机器学习还没有。


举个例子,假设你的任务是为你所在的初创公司组建一个产品工程组织,而这家公司是一个开发 Web 应用程序的公司。即使你没有组建团队的经验,你也可以找到成千上万的文章和书籍,它们会告诉你这个工程组织应该采用什么结构以及如何发展。


现在想象一下,你在一家刚刚开始涉足机器学习的公司。你已经聘请了一名数据科学家来领导最初的工作,结果也不错。随着机器学习在产品中的应用越来越深入,随着数据科学家的职责迅速增加,机器学习团队显然需要发展壮大。


在这种情况下,并没有那么多关于如何构建一个生产级机器学习团队的文章和书籍。


这不是一个不常见的场景,经常出现的情况是,机器学习组织的新职责—特别是基础设施—被分配给了数据科学家。


这是个错误。

机器学习和机器学习基础设施的区别

在这一点上,平台和产品工程师的区别已经很好理解了。类似地,数据分析师和数据工程师显然是不同的角色。


许多公司的机器学习仍然缺乏这种专业化。


了解机器学习和机器学习基础设施之间的区别很重要,这有助于了解它们所需的工作和工具。


为了设计和训练新模型,数据科学家需要:


  • 把时间花在 Notebook、分析数据、做实验上。

  • 考虑类似数据保健和为数据集选择正确的模型架构这样的问题。

  • 使用 Python、R、Swift 或 Julia 等编程语言。

  • 对像 PyTorch 或 TensorFlow 这样的机器学习框架有自己的见解。


换句话说,他们的职责、技能和工具将围绕着操纵数据开发模型,他们的最终输出将是可以提供最准确预测的模型。


基础设施方面则完全不同。


将模型投入生产应用的一种常见方法是将其作为微服务部署到云中。要将模型部署为生产用 API,工程师需要:


  • 在配置文件、终端和云提供商的控制台之间分配他们的时间,设法优化稳定性、延迟和成本。

  • 考虑实例的自动扩展、在 API 不崩溃的情况下更新模型以及在 GPU 上提供推断服务等问题。

  • 使用 Docker、Kubernetes、Istio、Flask 等工具,以及他们的云提供商提供的任何服务/API。


关于机器学习和机器学习基础设施方面的工作,下面是一个简单的可视化:



机器学习 vs 机器学习基础设施


直观地说,数据科学家应该处理左边的圆,而不是右边的圆,这是有道理的。


让非专业人员管理基础设施有什么问题吗?


我们不妨做个假设。假设你必须指派某人来管理你的机器学习基础设施,但是你又不想让某人全职参与其中。你只有两个选择:


  • 一个是数据科学家,因为他们熟悉机器学习。

  • 一个是 DevOps 工程师,因为他们熟悉一般的基础设施。


这两种选择都有问题。


首先,数据科学家应该尽可能多的把时间花在他们最擅长的数据科学上。当然,这并不是说学习基础设施超出了他们的工作范围,只是基础设施和数据科学都是全职工作,将数据科学家的时间分配到这两项工作中会降低产出的质量。


其次,你的组织需要专门负责机器学习基础设施的人员。在生产环境中提供模型服务不同于托管 Web 应用程序。你需要一个专门的人来担任此角色,他可以在组织中倡导机器学习基础设施。


这种倡导是至关重要的。我了解了很多机器学习组织,你会惊讶地发现,他们的瓶颈往往不是来自技术性挑战,而是来自组织性挑战。


例如,我曾见过需要使用 GPU 进行推理的机器学习团队——像GPT-2这样的大型模型基本上都要求合理的延迟时间——但他们却无法获得 GPU,因为他们的基础设施是由更广泛的 DevOps 团队管理的,而这些团队不想让自己承担成本。


有专人致力于你的机器学习基础设施,意味着你不仅有一个不断改进基础设施的团队成员,还意味着你有一个能够满足你的团队需求的倡导者。

那么谁应该管理基础设施?

机器学习基础设施工程师。


现在,不要对这种官方的头衔有异议,要知道,机器学习还处于初级阶段,在头衔问题上,它还属于“狂野的西部”。不同的公司可能会有不同的叫法:


  • 机器学习基础设施工程师

  • 数据科学平台工程师

  • ML 生产工程师


我们已经可以看到成熟的机器学习组织招聘这个职位,包括 Spotify:



还有 Netflix:



随着诸如 Gmail 的 Smart Compose、Uber 的 ETA 预测和 Netflix 的内容推荐等基于 ML 的功能在软件中的应用越来越普遍,机器学习基础设施变得越来越重要。


如果我们希望未来以 ML 为基础的软件真正普及开来,那么消除基础设施瓶颈就至关重要——要做到这一点,我们需要将其真正的专门化,让数据科学家专注于数据科学。


英文原文:Stop making data scientists manage Kubernetes clusters


2020-02-21 08:001504

评论

发布
暂无评论
发现更多内容

第十三周作业

大肚皮狒狒

Python可视化工具集合来报道(上)

小齐写代码

Sora:新一轮产业技术革命的爆发点

老张

人工智能 sora

LLMops:大模型时代的运维与部署之道

百度开发者中心

人工智能 运维 大模型 LLM

SQL注入有什么办法防范

德迅云安全杨德俊

从差旅申请到易快报,企业如何通过聚道云实现流程自动化?

聚道云软件连接器

案例分享

从人员外包到测试工具、测试平台,提供全方位的测试解决方案~

测吧(北京)科技有限公司

测试

从人员外包到测试工具、测试平台,提供全方位的测试解决方案

测试人

外包 软件测试 测试工具 测试平台

跨境云手机如何简化tiktok运营流程

Ogcloud

TikTok 云手机 海外云手机 Tik Tok直播 tiktok云手机

1 月比特币 ETF 终上市,公链稳健发展

Footprint Analytics

区块链 公链 BTC

利用预训练模型优化大模型训练

百度开发者中心

人工智能 深度学习 大模型

WorkPlus构建安全高效的内网通信平台,助力企业内部协作

BeeWorks

WorkPlus AI助理提供智能化客服解决方案,助力企业高效沟通

BeeWorks

高防云服务器租用常见问题解答:确保顺畅的租用体验

一只扑棱蛾子

高防服务器 高防云服务器

基于Doris构建亿级数据实时数据分析系统

不在线第一只蜗牛

MySQL 数据库 Doris

云手机受欢迎背后的原因及未来展望

Ogcloud

云手机 海外云手机 云手机海外版 国外云手机

云手机在引流方面有什么优势?

Ogcloud

云手机 海外云手机 云手机海外版 电商云手机

WorkPlus Meet助力企业建立安全可靠的私有化视频会议平台

BeeWorks

适用于 Amazon Step Functions 的低代码可视化新工作流 Workflow Studio, 现已在 Amazon Application Composer 正式发布!

亚马逊云科技 (Amazon Web Services)

低代码 亚马逊云科技 Amazon Lambda Amazon Step Functions

不要再让数据科学家管理Kubernetes集群了_AI&大模型_Caleb Kaiser_InfoQ精选文章