写点什么

使用 Spark Streaming 进行情感分析

  • 2016-05-24
  • 本文字数:2054 字

    阅读完需:约 7 分钟

这里将使用 Twitter 流式数据,它符合所有所需:持续而且无止境的数据源。

Spark Streaming

Spark Streaming 在电子书《手把手教你学习Spark》第六章有详细介绍,这里略过Streaming API 的详细介绍,直接进行程序开发 。

程序开发设置部分

程序开发起始部分需要做好准备工作。

复制代码
val config = new SparkConf().setAppName("twitter-stream-sentiment")
val sc = new SparkContext(config)
sc.setLogLevel("WARN")
val ssc = new StreamingContext(sc, Seconds(5))
System.setProperty("twitter4j.oauth.consumerKey", "consumerKey")
System.setProperty("twitter4j.oauth.consumerSecret", "consumerSecret")
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret", "accessTokenSecret")
val stream = TwitterUtils.createStream(ssc, None)

这里创建一个 Spark Context sc,设置日志级别为 WARN 来消除 Spark 生成的日志。使用sc创建 Streaming Contextssc,然后设置 Twitter 证书来获得 Twitter 网站数据。

Twitter 上现在的趋势是什么?

很容易的能够找到任意给定时刻的 Twitter 趋势,仅仅需要计算数据流每个标签的数目。让我们看下 Spark 如何实现这个操作的。

复制代码
val tags = stream.flatMap { status =>
status.getHashtagEntities.map(_.getText)
}
tags.countByValue()
.foreachRDD { rdd =>
val now = org.joda.time.DateTime.now()
rdd
.sortBy(_._2)
.map(x => (x, now))
.saveAsTextFile(s"~/twitter/$now")
}

首先从 Tweets 获取标记,并计算标记的数量,按数量排序,然后持久化结果。我们基于前面的结果建立一个监控面板来跟踪趋势标签。作者的同事就可以创建一个广告标记(campaigns),并吸引更多的用户。

分析 Tweets

现在我们想增加一个功能来获得用户主要感兴趣的主题集。为了这个目的我们想对 Tweets 的大数据和食物两个不相关的主题进行情感分析。

有几种 API 可以在 Tweets 上做情感分析,但是作者选择斯坦福自然语言处理组开发的库来抽取相关情感。
build.sbt文件中增加相对应的依赖。

复制代码
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1"
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1" classifier "models"

现在,我们通过 Streaming 过滤一定的哈希标签,只选择感兴趣的 Tweets,如下所示:

复制代码
val tweets = stream.filter {t =>
val tags = t.getText.split(" ").filter(_.startsWith("#")).map(_.toLowerCase)
tags.contains("#bigdata") && tags.contains("#food")
}

得到 Tweets 上所有标签,然后标记出#bigdata 和 #food 两个标签。
接下来定一个函数从 Tweets 抽取相关的情感:

def detectSentiment(message: String): SENTIMENT_TYPE然后对 detectSentiment 进行测试以确保其可以工作:

复制代码
it("should detect not understood sentiment") {
detectSentiment("") should equal (NOT_UNDERSTOOD)
}
it("should detect a negative sentiment") {
detectSentiment("I am feeling very sad and frustrated.") should equal (NEGATIVE)
}
it("should detect a neutral sentiment") {
detectSentiment("I'm watching a movie") should equal (NEUTRAL)
}
it("should detect a positive sentiment") {
detectSentiment("It was a nice experience.") should equal (POSITIVE)
}
it("should detect a very positive sentiment") {
detectSentiment("It was a very nice experience.") should equal (VERY_POSITIVE)
}

完整列子如下:

复制代码
val data = tweets.map { status =>
val sentiment = SentimentAnalysisUtils.detectSentiment(status.getText)
val tags = status.getHashtagEntities.map(_.getText.toLowerCase)
(status.getText, sentiment.toString, tags)
}

data 中包含相关的情感。

和 SQL 协同进行分析

现在作者想把情感分析的数据存储在外部数据库,为了后续可以使用 SQL 查询。
具体操作如下:

复制代码
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
data.foreachRDD { rdd =>
rdd.toDF().registerTempTable("sentiments")
}

将 Dstream 转换成 DataFrame,然后注册成一个临时表,其他喜欢使用 SQL 的同事就可以使用不同的数据源啦。

sentiment 表可以被任意查询,也可以使用 Spark SQL 和其他数据源(比如,Cassandra 数据等)进行交叉查询。
查询 DataFrame 的列子:

sqlContext.sql("select * from sentiments").show()## 窗口操作

Spark Streaming 的窗口操作可以进行回溯数据,这在其他流式引擎中并没有。
为了使用窗口函数,你需要 checkpoint 流数据,具体详情见 http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
简单的一个窗口操作:

复制代码
tags
.window(Minutes(1))
. (...)

结论

此列子虽然简单,但是其可以使用 Spark 解决实际问题。我们可以计算 Twitter 上主题趋势。

2016-05-24 17:455344
用户头像

发布了 43 篇内容, 共 30.2 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

中国边缘云公有云服务市场 Top2,百度智能云让智算无处不在

百度开发者中心

云计算 #百度智能云# 边缘云

Gartner发布中国容器管理平台供应商识别指南,灵雀云实力入选

York

容器 云原生 系统架构 研究报告 平台选型

常用测试策略与测试手段

测吧(北京)科技有限公司

测试发开

Backgrounds——为所有人准备的mac动态壁纸,让桌面更生动

互联网搬砖工作者

微服务 Spring Boot 整合Redis 实战开发解决高并发数据缓存

Bug终结者

redis缓存 三周年连更

深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。

汀丶人工智能

人工智能 深度学习 学习率 warmup batchsize

“亮相”欧洲!TDengine 在 KubeCon 与开发者探讨云原生与数据库的技术结合

TDengine

tdengine 时序数据库 KubeCON

小技巧:如何让 Windows 应用程序在 Parallels Desktop 中启动得更快

互联网搬砖工作者

《一时重构一时爽,一直重构一直爽》

后台技术汇

代码重构 软件重构 三周年连更

景区共享电动车厂家如何找?投放前景如何

共享电单车厂家

共享电动车厂家 景区共享电单车 共享电单车投放 共享电单车生产

聊聊 CSS 隐藏元素的 10 种实用方法

茶无味的一天

CSS 隐藏元素

使用depay信用卡开通chatGPT付费API

石云升

AI ChatGPT 三周年连更

电子元器件“切开后”,原来是这样子的!

元器件秋姐

科普 三极管 元器件 二极管 电感

从 Dev 和 Ops 视角出发,聊聊 DevSecOps 的 What / Why / How

极狐GitLab

DevOps 安全 DevSecOps 安全左移 安全合规

Alibaba微服务线上架构攻略,从实战到源码精讲

程序知音

Java 微服务 SpringCloud java架构 后端技术

MySQL进阶之道,MySql性能实战源码+笔记+项目实战

程序知音

Java MySQL 数据库 后端

带你掌握数仓的作业级监控TopSQL

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 4 月 PK 榜

重新学习Java线程原语

码语者

Java 线程

Qz学算法-数据结构篇(引入)

浅辄

数据结构 三周年连更

迪斯克分投趣模式挖矿分红dapp系统开发功能详情

开发v-hkkf5566

如何在页面中监听“不存在”的 DOM 节点

茶无味的一天

JavaScript DOM web api 水印 MutationObserver

今晚直播 | 思码逸陆春蕊:面对研发效能度量落地难点,如何让数据说话?

思码逸研发效能

研发效能

企业级无代码平台,「重塑」软件生产关系

ToB行业头条

【重磅】针对小微企业信息安全,行云管家堡垒机隆重推出免费版

行云管家

云计算 企业上云 安全运维 运维安全

熬夜肝到秃头!阿里顶配级Spring Security笔记

程序知音

Java spring 后端 spring security java架构

如何从1到99做好产品 | 得物技术

得物技术

OpenHarmony开发者大会举办,OpenHarmony项目群授牌30家捐赠单位及个人

最新动态

详解数据结构中栈的定义和操作

华为云开发者联盟

数据结构 开发 华为云 华为云开发者联盟 企业号 4 月 PK 榜

数字化转型框架如何搭建?

优秀

数字化转型

玩转服务器之Docker篇:10分钟学会搭建 Docker 环境

京东科技开发者

云计算 容器 Docker 镜像 企业号 4 月 PK 榜

矢量图片转换工具:Vector Magic 免激活版

真大的脸盆

Mac Mac 软件 图片格式转换 图片格式

使用Spark Streaming进行情感分析_语言 & 开发_侠天_InfoQ精选文章