写点什么

中科院开源图形化机器学习系统 Easy ML

  • 2017-06-15
  • 本文字数:2089 字

    阅读完需:约 7 分钟

随着人工智能发展,机器学习成为越来越多大数据应用的选择,不仅节省人力,准确率也有很大的提升。但是机器学习的使用却并不简单,复杂的算法、繁琐的配置等等问题让技术人员头疼不已,以至于在很多大数据平台上,机器学习的作用并没有被很好的发挥出来。

据官方资料,中科院发布 BDA 平台的 Easy Machine Learning 系统 提供了一个通用的数据流系统,可以降低将机器学习算法应用于实际任务的难度。

什么是 Easy Machine Learning 系统?最通俗的翻译就是:简单机器学习系统。

在该系统中,一个学习任务被构造为一个有向非循环图(DAG/directed acyclic graph),每个节点表征一步操作(即机器学习算法),每一条边表征从一个节点到后一个即节点的数据流。

任务可被人工定义,或根据现有任务/模板进行克隆。在把任务提交到云端之后,每个节点将根据 DAG 自动执行。图形用户界面被实现,从而可使用户以拖拉的方式创建、配置、提交和监督一项任务。

系统包含三个主要组件:

分布式的机器学习库不仅能实现流行的机器学习算法,也能实现数据预处理/后处理、数据格式转变、特征生成、表现评估等算法。这些算法主要是基于 Spark 实现的。

基于 GUI 的机器学习开发环境系统能让用户以拖放的方式创造、安装、提交、监控、共享他们的机器学习流程。机器学习库中所有的算法都可在此开发环境系统中获得并安装,它们是构建机器学习任务的主要基础。

执行任务的云服务该服务基于开源的 Hadoop 和 Spark 大数据平台建立,在 Docker 上组织了服务器集群。从 GUI 上接受一个 DAG 任务之后,在所有的独立数据源准备好时,每个节点将会自动安排运行。对应节点的算法将会依据实现在 Linux、Spark 或者 Map-Reduce\cite 上自动安排运行。

为什么要使用 Easy ML?总结起来,Easy ML 的优势主要有三点:

  1. 降低定义和执行机器学习任务的障碍 ;
  2. 共享和重用算法的实现,作业 DAG 和实验结果 ;
  3. 将独立算法和分布式算法无缝集成在一个任务中。

从官方资料可以看到,BDA 平台包括两大组件:

一个是分布式大数据分析函数与算法库 BDA Lib,基于 Spark 内存分布式计算框架,具有强大的大数据处理能力。提供丰富的机器学习算法可供选择,涵盖分类聚类、文本分析、个性化推荐等方向;可运作于单机环境,实现数据分布式和模型分布式;提供极简的 API 接口 / 支持命令行运行。

另一个是可视化任务构建与管理平台 BDA Studio,拥有可拖拽式图形化操作界面,可以支持 MapReduce/Spark/ 单机混合执行,具有强大的数据处理能力;集成了丰富的系统分析程序,支持私有数据 / 自定义数据分析算法模块,支持程序模块 / 应用发布与共享,提供大数据分析样例模板。

两大 BDA 平台组件与三大 Easy ML 组件优势互补,可大幅度提升用户对大数据分析的效率和体验。

Easy ML 和 Azure MLMicrosoft 也有一款图形化界面的机器学习产品:Azure ML。

Microsoft 的 Azure ML Studio 提供了一个快速的学习曲线,它不需采取深层数据或编码的方式来启动运行。

Microsoft Azure 机器学习是一种用于执行价值预测 (回归),异常检测,聚类和分类的云服务。Azure 机器学习是微软 Cortana 分析套件产品的一部分,Azure ML Studio 图形化、模块化的方法将让你快速了解机器学习模型。

Azure ML Studio

Azure 提供了三个级别的工作空间和四种机器学习工作区,而不同级别的工作空间拥有的功能也均有不同,同时使用的价格也有差异。

不同于商业化的 Azure ML,Easy ML 系统已经完全开源,开发者可以获得全部源代码,并对源代码进行研究和修改。

开源也好,商业也罢,不论是微软的 Azure ML,还是国产的 Easy ML,共同目的都是为了让开发者能够更好地理解机器学习,更加轻松的进行开发,其实对于大部分的开发者来说:适合自己的,就是最好的。

如何使用 Easy ML?

安装

在使用之前,用户需要对自己计算机的环境变量进行配置。配置教程地址如下:

https://github.com/ICT-BDA/EasyML/blob/master/QuickStart.md

使用根据官方 GitHub 的 README 文档,在运行 Easy ML 之后,可以使用官方账号 bdaict@hotmail.com、密码进行 bdaict 登录使用,地址如下:

http://localhost:18080/EMLStudio.html(建议使用 Chrome 浏览器)

登陆成功后,可以看到正常运行界面如下:

用户可以根据左边菜单的选择算法和数据集创建一个机器学习任务(一个数据流 DAG)。用户可以点击选择在 Program 和 Data 菜单项下面的算法和数据集,同样也可以点击 Job 菜单项选择现存的任务,并复制和做一些必要的修改。用户同样可以在右边的菜单修改任务信息和每一个结点的参数值。任务中的结点可以对应于单机 Linux 程序或在 Spark、Hadoop Map-Reduce 上运行的分布式程序。

更详细的使用教程请访问:

https://github.com/ICT-BDA/EasyML

参考资料:

论文:

http://www.bigdatalab.ac.cn/~junxu/publications/CIKM2016_BDADemo.pdf

GitHub:

  1. 配置

https://github.com/ICT-BDA/EasyML/blob/master/QuickStart.md
2. 使用

https://github.com/ICT-BDA/EasyML


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-06-15 19:0018197
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 281.4 次阅读, 收获喜欢 1302 次。

关注

评论

发布
暂无评论
发现更多内容

你写,我“奖”|TDengine用户故事征集

TDengine

tdengine 热门活动

图解4种git合并分支方法

xcbeyond

git 分支合并 28天写作 12月日更

C#中的属性

喵叔

28天写作 12月日更

Dubbo框架学习笔记八

风翱

dubbo 12月日更

PassJava 开源 (二) :初始化数据库表和搭建管理后台

悟空聊架构

SpringCloud 28天写作 悟空聊架构 12月日更

枚举代替常量

李子捌

28天写作 21天挑战 12月日更

解决 ERROR: yaml.parser.ParserError: while parsing a block mapping

liuzhen007

28天写作 12月日更

语音信号处理1:语音信号处理的发展

轻口味

语音信号处理3:语音信号处理的的整体结构

轻口味

Java访问修饰符的正确使用姿势

李子捌

Java 28天写作 21天挑战 12月日更

云原生时代,CNStack 如何解决企业数字化转型难题?

阿里巴巴云原生

阿里云 容器 云原生 技术中台 CNStack

数仓与主题域

圣迪

数据仓库 数据 数仓 主题域 主题

语音信号处理2:语音信号处理的应用

轻口味

晚安吻

mtfelix

28天写作

低代码数字化运营篇:那些返乡卖农产品的年轻人后来都怎么样了?

优秀

低代码 农产品

端侧AI进化论:HUAWEI HiAI Foundation的奇妙旅程

脑极体

盘点 2021|拥抱变化,不负韶华

架构精进之路

程序人生 盘点2021

LabVIEW目标对象分类识别(理论篇—5)

不脱发的程序猿

机器视觉 图像处理 LabVIEW 目标对象分类 分类算法

重磅发布全总结丨一文看懂阿里云弹性计算年度峰会

阿里云弹性计算

弹性计算 年度峰会

清河机械:用宜搭建设工厂数字化系统,节省80%开发成本

一只大光圈

阿里巴巴 低代码 数字化转型 钉钉宜搭

什么是事实?什么是真相?

石云升

28天写作 12月日更

聊聊文章输出的背后

卢卡多多

28天写作 12月日更

饿了么小程序容器首屏秒开优化实践

阿里巴巴终端技术

小程序 App 移动开发 客户端 小程序容器

一份前端够用的 Linux 命令

冴羽

vim Linux 前端 Shell 手册

RTC月度小报6月丨编程挑战赛圆满收官;声网上市1周年回顾...

声网

人工智能 月度小报

模块七作业

doublechun

「架构实战营」

智慧公安情报研判重点人员管控系统开发建设

a13823115807

智慧公安情报研判系统开发

LeetCode 刷完 500 题!我想明白了这些……

Charles

算法 刷题 经验总结 内卷 攻略

再获行业认可,火线安全入选「软件开发安全优秀厂商」

火线安全

“全”事件触发:阿里云函数计算与事件总线产品完成全面深度集成

阿里巴巴云原生

阿里云 云原生 函数计算 EventBridge

冬至说焦虑

张老蔫

28天写作

中科院开源图形化机器学习系统Easy ML_语言 & 开发_陈思_InfoQ精选文章