写点什么

Mistral 拿出杀手锏叫阵 DeepSeek!性价比卷出天际、开源模型却断供,社区粉丝失望透顶

  • 2025-05-09
    北京
  • 本文字数:3469 字

    阅读完需:约 11 分钟

大小:1.58M时长:09:13
Mistral 拿出杀手锏叫阵 DeepSeek!性价比卷出天际、开源模型却断供,社区粉丝失望透顶

当地时间 5 月 7 日,法国 AI 初创公司 Mistral AI 宣布推出新模型 Mistral Medium 3。总的来说,新模型有三个亮点:

 

  1. 引入一个全新的模型类别,兼顾 SOTA 性能、成本大降 87.5%,并以支持以更简单的部署方式,加速企业落地应用。

  2. 在编程和多模态理解等专业场景中表现突出。

  3. 具备一系列企业级功能,包括:混合部署或本地/虚拟私有云(VPC)部署、定制化的后训练及可集成至企业工具和系统中。

 

据官方介绍,在各项基准测试中,Mistral Medium 3 能达到或超过 Claude Sonnet 3.7 的 90%,但成本却低得多(每百万 token 输入 0.4 美元/输出 2 美元)。定价方面,无论是 API 还是自部署系统,该模型优于 DeepSeek V3 等模型。

 

“在性能方面,该模型超越了领先的开源模型(如 Llama 4 Maverick)以及企业级模型(如 Cohere Command A)。在价格方面,它也优于 DeepSeek V3 等低价模型,无论是在 API 使用还是自部署系统方面都更具优势。”官方表示。

 

据介绍,Mistral Medium 3 在编码和 STEM 任务中尤其突出,在这些任务中,它的表现与参数大但速度慢得多的竞争对手相差无几。 



除了学术基准测试外,Mistral 还发布了更能代表实际用例的第三方人工评测。“Mistral Medium 3 在编码领域继续大放异彩,其全面性能远超一些参数规模更大的竞争对手。”

 



此外,Mistral Medium 3 支持在任意云平台部署,包括配置为四块 GPU 及以上的自托管环境。

 

“可惜 Mistral 已经过时了。写小说效果差,编程还行,但也不算特别出色。Qwen 3 30B、Gemma 3 27B、GLM-4 很难被超越。”有网友评价道。

 

失去了开源口碑

 

2023 年 9 月,开源 Mistral 7B 模型以超越同量级竞品的性能和选择开放性的 Apache 2.0 许可证引发社区轰动,这也让这家刚成立不久的大模型公司迅速进入公众视野。

 

Mistral 并非所有模型都开源,这无可厚非。问题是,自 Mistral 7B 后, Mistral 再没有一个拿得出手的开源模型。而 Mistral 更先进模型的应用,例如其广受好评的一款新编程工具,目前仅在商业平台上销售,且已经与微软、亚马逊和谷歌达成了云分销协议。以至于,网友都在呼吁 Mistral 赶紧出下一个开源模型。

 


“非本地版本,没有开放权重,无法与 Qwen3 进行比较,又一个不相关的版本。” Medium 3 发布后网友 AaronFeng47 给出的评价。

 

对于 Mistral 在官博中写的“即便是我们的中等规模模型,在性能上也远超旗舰级开源模型(如 Llama 4 Maverick),我们对未来‘开放’发布的内容充满期待。”有网友怒道:

 

“开放”是吧?他们的行为真的有些奇怪。最初在 1 月 30 日那篇博客文章中,他们让社区充满期待,仿佛要从他们专有的“开放权重”许可 MRL 转向 Apache-2.0 许可:“我们重申对在通用模型上使用 Apache 2.0 许可的承诺,并将逐步淘汰 MRL 许可的模型。 ”

 

然而在接下来的四个月时间里,他们至少发布了三款更加受限的“开放权重”模型(Saba、Mistral OCR 和 Mistral Medium 3),这些模型仅能供企业客户在本地自托管部署。

 

如果不是因为他们对“承诺”的不断漠视,我也不会因此指责他们。搞笑的是,他们在这段期间里几乎只发布了一款真正开源的模型——Mistral Small 3.1(相较 Mistral Small 3 只是小幅更新),而社区对此反响平平。

 

“现在我希望他们能发布一个开源权重模型,其质量至少能与 GPT-4.1 mini 相媲美,但模型规模最多与当前的 Mistral Small 一样,或者如果是 MoE 模型,则规模可与新推出的 Qwen 3 30B A3B 相当。我们总可以做个美梦,对吧?”有网友讽刺道。

 

在 AI 领域,一年是很长的时间。随着人们发现 Mistral 在 AI 竞赛中难以追赶更大规模的竞争对手,大家最初的热情开始冷却。

成也“高效率”,败也“高效率”?

 

Mistral AI 的三位创始人都有在美国大型科技公司从事 AI 研究的背景,这些公司在巴黎也有重要业务。CEO Arthur Mensch 曾在 Google 的 DeepMind 工作,CTO Timothée Lacroix 和首席科学官 Guillaume Lample 则是前 Meta 员工。这三个人被誉为“将欧洲最终推上科技顶尖舞台的英雄。”



“我们曾协助他们进行早期融资,并在公司架构初期提供支持……但真正去执行这些的,还是他们自己,”巴黎健康保险初创 Alan 创始人兼 CEO Jean-Charles Samuelian-Werve 说道,“对于欧洲在生成式 AI 领域实现战略自主的想法固然重要,但 Mistral 更希望成为一个全球性的佼佼者。”

 

Mistral 一直将成本效率视为最大的优势。“我们使用的算力比美国竞争对手少了 100 倍,但我们已经能够开发出几乎处于前沿水平的模型,”Mensch 在接受《金融时报》采访时表示。

 

这一策略为 Mistral 赢得了包括微软在内的支持者。微软与该初创公司签署了合作协议并入股少量股份,这是微软在 OpenAI 之外对大模型公司的首笔投资。基准测试网站(如 RankedAI.co)也将 Mistral 列为全球十大模型开发者之一。

 

但 Mistral 正在被包括 DeepSeek 在内的新兴竞争对手超越。经济咨询公司 Entext 创始人 Sean Maher 表示:“中国无疑已经接过了这一接力棒,成为 OpenAI 及其美国竞争对手的‘快速追随者’。”他将 DeepSeek 的最新模型 V3 称为“令人瞠目结舌的时刻”,并认为“它将改变整个行业的经济格局”。

 

尽管一些支持者认为这证明了 Mistral 的做法是正确的,但也有人认为这是对其提供负担得起的“开放”AI 商业模式的威胁。甚至一些欧洲科技创始人和投资者认为,在前沿大模型开发者几乎可以获得无限资本的时期,Mistral 选择聚焦“高效率”是一种战术上的失误。

 

“全欧洲的希望”最好的归宿是“卖身”?

 

法国总统马克龙也对这家初创公司给予了热情支持,他被 Mistral “主权化”且更“开放”的 AI 承诺所吸引,非常认同其完全独立于美国大型科技公司的定位。欧盟在 2023 年底讨论其首部旗舰人工智能法规时,马克龙等人还警告布鲁塞尔政府不要用过多的繁文缛节来阻碍这一新兴行业的发展。

 

尽管欧洲还有一些前景可期的 AI 初创公司,如英国的 Wayve、德国的 DeepL 和 Black Forest Labs,以及法国的 Poolside,但目前没有一家在开发大模型。曾被寄望成为德国本土大模型冠军的 Aleph Alpha,去年已离开大模型领域,这使 Mistral 成为欧洲唯一的重量级选手。

 

随着面临着更大的竞争压力,去年市场上开始传出 Mistral 被收购的消息。

 

在今年的达沃斯论坛上,Mensch 回避了关于 Mistral 是否会像许多较小玩家那样不得不出售给大型科技公司的提问。但他坚称不会出售 Mistral,并希望公司有朝一日可以上市。“我们认为,作为一家独立公司所做的事情非常重要,”他说道,“所以这不在考虑范围内。”

 

不过,一位 Mistral 投资人在私下里并不那么乐观。“我们开始看到不好的征兆,”该人士说道,“他们需要出售自己。”

 

Mistral AI 成立不足两年,却已在去年 6 月完成了 6 亿欧元的融资,估值接近 60 亿欧元,但批评者认为该公司正处于 AI 初创企业的尴尬困境:筹资规模过大,无法悄然退出市场;但又不足以在全球 AI 竞赛中保持领先地位。

 

目前,Mistral AI 的员工人数约为 150 人,而其美国竞争对手拥有数千名员工。

 

当被问及 Mistral 是否计划在今年筹集更多资金时,Mensch 表示:“可能吧,尽管我们不一定需要。市场上确实已经有人对此感兴趣。”

 

Maher 预测,Mistral 的发展可能会效仿 Adept 和 Inflection 等 AI 初创企业,最终被大型科技公司“人才收购”。不过,这种情况是否会发生,还取决于布鲁塞尔的反垄断监管机构是否允许这样一个具有战略意义的欧洲资产被美国买家收购。“形势已经发生变化,(Mistral)需要找准自己的定位,否则就会被淘汰。” 

 


领先的 AI 企业已筹集了超过 500 亿美元的资金——远远超过 Mistral 

 

如今,Mistral AI 通过 Le Chat 的付费层来获取部分收入。Le Chat Pro 计划在今年 2 月推出,定价为 14.99 美元/每月。在 B2B 领域,Mistral AI 通过基于使用量定价的 API 来变现其旗舰模型。企业也可以为这些模型购买许可证,公司可能还从其战略合作伙伴关系中获得了可观的收入份额。

 

熟悉 Mistral 财务状况的投资者称,其年化运行率 (ARR)已达数千万美元。与此同时,据报道,Anthropic 去年销售额接近 10 亿美元,而 OpenAI 的营收则接近 40 亿美元。

 

硅谷风投公司 Menlo Ventures 的一项研究显示,Mistral 在企业级 AI 市场中排名第五,去年市占率仅为 5%,不到 Google 或 Meta 的一半,远远落后于 OpenAI。

 

参考链接:

https://mistral.ai/news/mistral-medium-3

https://techcrunch.com/2025/05/05/what-is-mistral-ai-everything-to-know-about-the-openai-competitor/?utm_source=chatgpt.com

https://www.ft.com/content/fa8bad75-dc55-47d9-9eb4-79ac94e54d82?utm_source=chatgpt.com

2025-05-09 13:578873

评论

发布
暂无评论

群体基因组文献解读-Prediction of axillary lymph node metastasis in triple-negative breast cancer by multi-omics analysis and an integrate

INSVAST

基因检测 生信分析 Sentieon 三阴性乳腺癌 变异分析

TikTok直播网络方案推荐

Ogcloud

TikTok 直播专线 tiktok直播 tiktok直播专线 tiktok直播网络

10 分钟了解 18 个冷门编程概念

俞凡

最佳实践

【YashanDB知识库】yasql执行报错

YashanDB

数据库 yashandb

设计了两个弹性长度数字编码,可以灵活地编解码数字以便高效传输

Drunk

编码 路由协议 DCE

恭喜 Apache RocketMQ、Apache Seata 荣获 2024 开源创新榜单“年度开源项目”

阿里巴巴云原生

Apache 阿里云 RocketMQ 云原生

GitLab 国际站中国大陆等地区停服,如何将数据快速迁移到云效

阿里巴巴云原生

阿里云 gitlab 云原生

通义灵码 2.0 全新升级,阿里云正式推出繁星计划

阿里巴巴云原生

阿里云 云原生

去哪儿 Node 生成 1 亿张图片实践 (Satori + Sharp)

Qunar技术沙龙

人工智能 Ai绘图

流程+数据,双轮驱动世界一流财务管理体系访谈分享

用友智能财务

投资 访谈 会计

专业解读:JNPF低代码开发平台怎样为企业财务管理创新转型提供数字化赋能

不在线第一只蜗牛

低代码

【YashanDB知识库】YCM Monit进程频繁误告警

YashanDB

数据库 yashandb

Vue 路由管理组件-Router

测试人

软件测试

场景题:如何实现亿级用户在线状态统计?

王磊

通义灵码 2.0 全新升级,阿里云正式推出繁星计划

阿里云云效

阿里云 云原生 通义灵码

云投集团:流程+数据,双轮驱动世界一流财务管理体系

用友智能财务

报表 财务 会计

人形机器人的ChatGPT时刻即将到来,如何转入?

机器人头条

自动驾驶 大模型 人形机器人 科技、

2024年终总结:终于把北京房贷还清啦!

王中阳Go

面试题 找工作 年终总结 就业辅导 程序员创业

我用RPA生成EXE,并使用激活码对EXE进行管理

火语言RPA

意图框架习惯推荐方案,为用户提供个性化内容分发

HarmonyOS SDK

harmoyos

探索Vue.js:提升前端开发的利器

测试人

软件测试

7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型

阿里巴巴云原生

阿里云 云原生 函数计算

GitLab 国际站中国大陆等地区停服,如何将数据快速迁移到云效

阿里云云效

阿里云 云原生

完全掌握|豆包MarsCode 编程助手使用技巧

TRAE.ai

人工智能 AI编程 豆包MarsCode

2025年,全球人形机器人市场迎来新格局!!

机器人头条

自动驾驶 科技 大模型 人形机器人

利用原生IP做海外电商平台店铺运营有哪些好处

Ogcloud

海外原生IP 海外IP 原生IP 海外IP代理 海外静态IP

Mistral 拿出杀手锏叫阵 DeepSeek!性价比卷出天际、开源模型却断供,社区粉丝失望透顶_AI&大模型_褚杏娟_InfoQ精选文章