10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

Uber 正式开源其分布式跟踪系统 Jaeger

  • 2017-11-08
  • 本文字数:1721 字

    阅读完需:约 6 分钟

Uber 在 GitHub 正式开源了分布式跟踪系统Jaeger ,其灵感来源于 Dapper OpenZipkin ,从 2016 年开始,该系统已经在 Uber 内部得到了广泛的应用,它可以用于微服务架构应用的监控,特性包括分布式上下文传播(Distributed context propagation)、分布式事务监控、根原因分析、服务依赖分析以及性能 / 延迟优化。该项目已经被云原生计算基金会(Cloud Native Computing Foundation,CNCF)接纳为第12 个项目

Uber 分布式跟踪技术的演化

Uber 的分布式跟踪系统是随着业务的演化而不断发展的,在由单体架构迁移至微服务时,传统的监视工具,例如度量值和分布式日志依然能够发挥作用,但这类工具往往无法提供跨越不同服务的可见性。因此,就有必要引入分布式跟踪的工具。

最初,Uber 所使用的跟踪工具叫做 Merckx。Merckx 架构使用了拉取模式,可从 Kafka 的指令数据中拉取数据流,其不足之处在于主要面向单体式 API 的时代,缺乏分布式上下文传播的概念。随后,Uber 开发了 TChannel ,这是一种适用于 RPC 的网络多路复用和框架协议。很多新构建的服务都使用了 TChannel,但是承担核心业务的大部分服务都没有使用 Tchannel。这些服务主要是通过四大编程语言(Node.js、Python、Go 和 Java)实现的,在进程间通信方面使用了多种不同的框架。这种异构的技术环境使得 Uber 在分布式追踪系统的构建方面会面临比谷歌和 Twitter 更严峻的挑战。

因此,Uber 专门组建了分布式跟踪团队,团队目标就是将现有的 Tchannel 原型系统转换为一种可以全局运用的生产系统,让分布式追踪功能可以适用并适应 Uber 的微服务。该团队集思广益,创建了 Jaeger 项目。
关于 Uber 分布式跟踪技术的演进过程,在 InfoQ 之前的文章中曾经有过相关报道

Jaeger 项目简介

术语

Jaeger 兼容 OpenTracing 的数据模型和 instrumentation 库,能够为每个服务 / 端点使用一致的采样方式。在 Jaeger 中,使用了该规范所定义的术语。

  • Span:代表了系统中的一个逻辑工作单元,它具有操作名、操作开始时间以及持续时长。Span 可能会有嵌套或排序,从而对因果关系建模。一个 RPC 调用的 Span 如下图所示。

  • Trace:代表了系统中的一个数据 / 执行路径,可以理解成 Span 的有向无环图。

组件

Jaeger 的各组件关系如下图所示:

Jaeger 客户端库

Jaeger 客户端库是 OpenTracing API 的特定语言实现。它们可以对要进行分布式跟踪的应用进行 instrument 操作,这些应用可以手动实现,也可以使用各种已有的开源的框架,比如 Flask、Dropwizard、gRPC 等。

经过 instrument 操作的服务在接收到新请求的时候,就会创建 Span 并关联上下文信息(trace id、span id 和 baggage)。只有 id 和 baggage 会随请求进行传播,而组成 Span 的其他信息,比如操作名称、日志等,并不会随之传播。采样得到的 Span 会在后台异步传递到进程外边,发送到 Jaeger Agent 上。

需要注意的是,所有的 Trace 都会生成,但是只有其中的一小部分会被采样。默认情况下,Jaeger 会采样 0.1% 的 Trace。

Agent

Agent 是一个网络守护进程,监听通过 UDP 发送过来的 Span,它会将其批量发送给 collector。按照设计,Agent 要被部署到所有主机上,作为基础设施。Agent 将 collector 和客户端之间的路由与发现机制抽象了出来。

Collector

Collector 从 Jaeger Agent 接收 Trace,并通过一个处理管道对其进行处理。目前的管道会校验 Trace、建立索引、执行转换并最终进行存储。存储是一个可插入的组件,现在支持 Cassandra。

Query

Query 服务会从存储中检索 Trace 并通过 UI 界面进行展现,该 UI 界面通过 React 技术实现,其页面 UI 如下图所示,展现了一条 Trace 的详细信息。

按照其官网的介绍,未来计划加入的功能包括自适应采样(Adaptive Sampling)提供更多种语言的客户端库、延迟矩阵图、动态配置、基于Apache Flink 构建数据管道,以支持Trace 聚集和数据挖掘,除此之外,Jaeger 0.70 版本已支持服务到服务的依赖图,未来还会支持基于路径的依赖图,能够展现出某项服务的所有上下流依赖,而不仅仅是临近的服务。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-11-08 18:005061

评论

发布
暂无评论
发现更多内容

IPv6常见安全问题

穿过生命散发芬芳

ipv6 三周年连更

使用体验 I 早知道 TDesign 支持 AVIF 图片压缩,我就不用为流量和格式发愁啦!

TDesign

前端 图片压缩 图片格式

火山引擎 DataLeap 下 Notebook 系列文章二:技术路线解析

字节跳动数据平台

数据治理 数据研发 企业号 4 月 PK 榜

舒明:稳定支撑日高峰亿级保单交易,国泰产险的运维创新实践

OceanBase 数据库

数据库 oceanbase

软件测试/测试开发丨Pytest 自动化测试框架(二)

测试人

软件测试 自动化测试 测试开发 pytest

性能报告 | YMatrix 5.0 对比 Greenplum 超 12 倍性能提升,TPC-H 基准测试报告发布

YMatrix 超融合数据库

时序数据库 测试工具 数据库、

中国年轻人阅读洞察2023

易观分析

年轻人 阅读

软件测试/测试开发丨Pytest 自动化测试框架(一)

测试人

软件测试 自动化测试 测试开发 pytest

火山引擎云原生数据仓库ByteHouse技术白皮书V1.0 (Ⅳ)

字节跳动数据平台

数据导入 实时数据 实时导入 企业号 4 月 PK 榜

PageObject设计模式

测吧(北京)科技有限公司

测试

OpenKruise V1.4 版本解读:新增 Job Sidecar Terminator 能力

阿里巴巴云原生

阿里云 开源 云原生 OpenKruise

网络工程师经常搞混的路由策略和策略路由,两者到底有啥区别?

wljslmz

三周年连更

阿里云张献涛:云原生计算基础设施助力汽车行业数字化升级

云布道师

云计算

Kubernetes网络策略之详解

乌龟哥哥

三周年连更

算法刷题-单词接龙、矩阵中的最长递增路径、Z 字形变换

共饮一杯无

数据结构 算法 三周年连更

Selenium测试用例如何编写

测吧(北京)科技有限公司

测试

从零学习SDK(8)SDK的集成和部署

MobTech袤博科技

数据中心厂商超云加入龙蜥社区,多款服务器完成与龙蜥操作系统适配

OpenAnolis小助手

开源 操作系统 龙蜥社区 CLA 长城超云

FastAPI 快速开发 Web API 项目: 通过 SQLAlchemy 进行数据操作

宇宙之一粟

Python sqlalchemy FastApi 三周年连更

如何搭建自己的ChatGPT网站,它来了

派大星

ChatGPT

新起点!大数据分布式可视化的 DAG 任务调度系统 Taier 正式发布1.4版本

袋鼠云数栈

开源

云原生时代,不可不知的基础设施即代码(IaC)

极狐GitLab

DevOps 云原生 CI/CD gitops IaC

C++实现消息队列

linux大本营

C++ 消息列队

什么是全民开发?|概念、技能和优势

草料二维码

低代码 无代码

连续3天3场分享,KubeVela@KubeCon EU 2023 抢鲜看!

阿里巴巴云原生

阿里云 开源 云原生 KubeVela

分析nginx访问日志,统计前10的ip

linux大本营

nginx 日志

MobTech 秒验|守护账户安全

MobTech袤博科技

WebIntents 翻身战,操作系统实现无缝集成的王牌

鼎道智联

AI

Uber正式开源其分布式跟踪系统Jaeger_语言 & 开发_张卫滨_InfoQ精选文章