2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

Uber 正式开源其分布式跟踪系统 Jaeger

  • 2017-11-08
  • 本文字数:1721 字

    阅读完需:约 6 分钟

Uber 在 GitHub 正式开源了分布式跟踪系统Jaeger ,其灵感来源于 Dapper OpenZipkin ,从 2016 年开始,该系统已经在 Uber 内部得到了广泛的应用,它可以用于微服务架构应用的监控,特性包括分布式上下文传播(Distributed context propagation)、分布式事务监控、根原因分析、服务依赖分析以及性能 / 延迟优化。该项目已经被云原生计算基金会(Cloud Native Computing Foundation,CNCF)接纳为第12 个项目

Uber 分布式跟踪技术的演化

Uber 的分布式跟踪系统是随着业务的演化而不断发展的,在由单体架构迁移至微服务时,传统的监视工具,例如度量值和分布式日志依然能够发挥作用,但这类工具往往无法提供跨越不同服务的可见性。因此,就有必要引入分布式跟踪的工具。

最初,Uber 所使用的跟踪工具叫做 Merckx。Merckx 架构使用了拉取模式,可从 Kafka 的指令数据中拉取数据流,其不足之处在于主要面向单体式 API 的时代,缺乏分布式上下文传播的概念。随后,Uber 开发了 TChannel ,这是一种适用于 RPC 的网络多路复用和框架协议。很多新构建的服务都使用了 TChannel,但是承担核心业务的大部分服务都没有使用 Tchannel。这些服务主要是通过四大编程语言(Node.js、Python、Go 和 Java)实现的,在进程间通信方面使用了多种不同的框架。这种异构的技术环境使得 Uber 在分布式追踪系统的构建方面会面临比谷歌和 Twitter 更严峻的挑战。

因此,Uber 专门组建了分布式跟踪团队,团队目标就是将现有的 Tchannel 原型系统转换为一种可以全局运用的生产系统,让分布式追踪功能可以适用并适应 Uber 的微服务。该团队集思广益,创建了 Jaeger 项目。
关于 Uber 分布式跟踪技术的演进过程,在 InfoQ 之前的文章中曾经有过相关报道

Jaeger 项目简介

术语

Jaeger 兼容 OpenTracing 的数据模型和 instrumentation 库,能够为每个服务 / 端点使用一致的采样方式。在 Jaeger 中,使用了该规范所定义的术语。

  • Span:代表了系统中的一个逻辑工作单元,它具有操作名、操作开始时间以及持续时长。Span 可能会有嵌套或排序,从而对因果关系建模。一个 RPC 调用的 Span 如下图所示。

  • Trace:代表了系统中的一个数据 / 执行路径,可以理解成 Span 的有向无环图。

组件

Jaeger 的各组件关系如下图所示:

Jaeger 客户端库

Jaeger 客户端库是 OpenTracing API 的特定语言实现。它们可以对要进行分布式跟踪的应用进行 instrument 操作,这些应用可以手动实现,也可以使用各种已有的开源的框架,比如 Flask、Dropwizard、gRPC 等。

经过 instrument 操作的服务在接收到新请求的时候,就会创建 Span 并关联上下文信息(trace id、span id 和 baggage)。只有 id 和 baggage 会随请求进行传播,而组成 Span 的其他信息,比如操作名称、日志等,并不会随之传播。采样得到的 Span 会在后台异步传递到进程外边,发送到 Jaeger Agent 上。

需要注意的是,所有的 Trace 都会生成,但是只有其中的一小部分会被采样。默认情况下,Jaeger 会采样 0.1% 的 Trace。

Agent

Agent 是一个网络守护进程,监听通过 UDP 发送过来的 Span,它会将其批量发送给 collector。按照设计,Agent 要被部署到所有主机上,作为基础设施。Agent 将 collector 和客户端之间的路由与发现机制抽象了出来。

Collector

Collector 从 Jaeger Agent 接收 Trace,并通过一个处理管道对其进行处理。目前的管道会校验 Trace、建立索引、执行转换并最终进行存储。存储是一个可插入的组件,现在支持 Cassandra。

Query

Query 服务会从存储中检索 Trace 并通过 UI 界面进行展现,该 UI 界面通过 React 技术实现,其页面 UI 如下图所示,展现了一条 Trace 的详细信息。

按照其官网的介绍,未来计划加入的功能包括自适应采样(Adaptive Sampling)提供更多种语言的客户端库、延迟矩阵图、动态配置、基于Apache Flink 构建数据管道,以支持Trace 聚集和数据挖掘,除此之外,Jaeger 0.70 版本已支持服务到服务的依赖图,未来还会支持基于路径的依赖图,能够展现出某项服务的所有上下流依赖,而不仅仅是临近的服务。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-11-08 18:004927

评论

发布
暂无评论
发现更多内容

用typescript类型来实现快排

Java-fenn

Java

CSS 有了:has伪类可以做些什么?

Java-fenn

Java

组装式应用小程序化,小程序容器技术必不可少

Speedoooo

小程序 小程序容器 组装式应用 组装式创新

web技术分享| 虚拟列表实现

anyRTC开发者

Vue 前端 Web 音视频 虚拟列表

一个不用写代码的案例,来看看Flowable到底给我们提供了哪些功能?

江南一点雨

Java springboot flowable

【开发者说】XstoryMaker快速书写剧本场景动画

HarmonyOS开发者

HarmonyOS

FreeRTOS记录(七、FreeRTOS信号量、事件标志组、邮箱和消息队列、任务通知的关系)

矜辰所致

FreeRTOS 9月月更 任务通知 事件标志组 邮箱和消息队列

计算机网络——数据通信基础知识

StackOverflow

编程 计算机网络 9月月更

Kubernetes 集群中日志采集的几种玩法

观测云

阿里双十一是怎么做全链路压测的?

程序员小毕

数据库 程序员 架构 面试 系统设计

前端食堂技术周刊第 52 期:Babel 7.19.0、Fresh 1.1、React Native 0.70、新的 Web 性能指标 INP

童欧巴

供应链金融能否成为汽车行业发展的驱动力?

旺链科技

区块链 产业区块链 汽车 供应链金融 企业号九月金秋榜

Java基础之Java枚举

自然

9月日更 Java core

Java基础知识(一些需要注意的点)

自然

9月日更 Java core 9月月更

不是吧,还有人不知道三目运算符的BUG

自然

Java core 9月月更

敏捷发版:让灰度发布像commit一样简单

Speedoooo

小程序 灰度发布 小程序容器 A/B 测试

如何设计一个面向未来的云原生数据库?

Zilliz

深度学习 数据库 云原生 信息检索 向量数据库

性能之巅-优化你的程序

Java-fenn

Java

组装式App小程序化,加速企业效率式研发

Speedoooo

小程序 APP开发 组装式应用

小程序生态能否助力国产系统

Geek_99967b

小程序 小程序容器

MobPush iOS推送功能最佳实现推荐

MobTech袤博科技

ios 消息推送

开源是什么意思?开源软件优缺点有哪些?

行云管家

开源 软件 开源软件 开源协议

一文了解 Java 中的构造器

华为云开发者联盟

Java 开发 企业号九月金秋榜

Intel全新加速指令AMX技术介绍&eBPF在低版本内核如何跑起来?今天3点见 | 第45-46期

OpenAnolis小助手

芯片 ebpf intel 龙蜥大讲堂 amx

三个Spring的问题把我问懵逼了

知识浅谈

spring 9月月更

给分库分表的 ShardingSphere 提了个PR,这Bug居然改了

Java全栈架构师

MySQL 数据库 程序员 面试 分布分表

聊聊如何利用p6spy进行sql监控

Java-fenn

Java

2022年云堡垒机采购就选行云管家五大理由

行云管家

云计算 网络安全 数据安全 云堡垒机

Flink 侧流输出源码解析

JasonLee实时计算

flink 源码

华为云为网站安全搭建一道智能高效屏障

科技怪咖

TDengine 3.0 的 Update 有何区别?

TDengine

tdengine 时序数据库 企业号九月金秋榜

Uber正式开源其分布式跟踪系统Jaeger_语言 & 开发_张卫滨_InfoQ精选文章