AICon 上海站|90%日程已就绪,解锁Al未来! 了解详情
写点什么

AI 加持的 mPaaS 如何打造“最懂用户”的 App

  • 2019-08-27
  • 本文字数:3298 字

    阅读完需:约 11 分钟

AI加持的mPaaS如何打造“最懂用户”的App

摘要: 阿里云峰会于 2019 年 3 月 21 日北京如期举办,蚂蚁金服产品服务化技术专家付海涛在《金融专场》分会场做了主题为《新一代移动研发平台 mPaaS 智能化之路》的精彩分享。



付海涛 蚂蚁金服产品服务化技术专家


本次的分享主要围绕以下内容展开:


  • 移动开发平台 mPaaS 发展历程

  • 移动开发平台 mPaaS 3.0 的产品体系

  • 阿里巴巴金融业务的进化

  • mPaaS 一体化移动智能场景

一、移动开发平台 mPaaS 的发展历程


2016 年 12 月,mPaaS 发布了 1.0 版本正式对外,1.0 主要是想要延续支付宝的金融属性,服务金融行业。因为我们相信作为同一类别的公司,支付宝已经做过金融行业都要走的路,相应的经验都可以被复制的。当时 mPaaS 团队跟很多金融机构做了深入沟通,我们发现大部分机构已经研发了自有 App,但难点并不在于 App 研发,而是如何解决 App 性能问题,提高用户体验。所以 mPaaS 1.0 优先开放支付宝的底层开发框架、UI 库、消息推送、网关服务以及移动分析能力,并以组件化的方式提供服务,让用户可以自行挑选适合自己需求的组件,像搭积木一样快速构建 App 基础架构和通用能力。


随着逐步深入金融行业,我们发现一些走在前列的金融机构业务逐渐成熟,迈入数字化转型阶段,希望对客户进行精细化运营。期间重庆农商行提出了“智慧银行”概念,重点建设数据采集,分析平台。同时由于互联网金融的兴起,金融机构在产品研发、发布更新的节奏越来越像互联网公司,希望能够具备快速扩展更新、应对突发事件进行动态化更新的能力。因此 mPaaS 2.0 逐步开放发布平台、热修复、离线包、数据同步、自定义分析等能力,更深入地改变企业移动开发的模式,助力企业做数字化转型,打造动态化超级 App。


随着时间推移,金融机构对用户有了更深刻的理解,同时对技术提出了更高的要求。为了更有效地利用数据,提高运营的 ROI,App 需要向智能化方向发展。另外,小程序作为 2018 年技术圈的热点,同样引起了金融行业的重视,金融公司普遍选择小程序作为抢占市场的利器。因此,蚂蚁金服将小程序框架抽离出来,进行产品化输出,金融机构可以基于此构建自己的 App 生态。

二、移动开发平台 mPaaS 3.0 的产品体系


三年的深耕细作,mPaaS 不仅积累了数百家付费用户,同时也极大程度地丰富了产品体系。mPaaS 产品体系主要分为三层:


首先,是动态灵活的前端能力。 目前 mPaaS 能够提供 Native、H5、支付宝小程序三大开发框架;100+ 的 UI 控件;以及包括扫码,本地缓存,客户端埋点等 20+ 功能性 SDK,可以让开发者快速接入搭建 App 所需要的基础能力。


其次,是坚实的移动中台能力。 除了客户端开发之外,mPaaS 还提供了移动中台中台能力,可以实现对 App 的整个生命周期的管理,包括 App 研发、测试、发布、分析、运营在内的各个环节。


最后,是稳定的后台连接能力。 mPaaS 为客户提供了移动网关和大文件通道来服务不同的场景,为用户开发 APP 提供了一个高稳定、高可靠以及高效率的后台连接服务能力。

三、阿里巴巴金融业务的进化


与阿里巴巴金融业务的发展历程相似,mPaaS 1.0 主要帮助金融级 App 提高兼容性和稳定性,强调服务可用。接下来,mPaaS 2.0 提倡精细化运营,用数据管理服务,在系统内部建立数字化体系,实现大数据平台。那么如何利用数据做到精细化、智能化运营,如何针对不同用户完成个性化的决策与推荐,mPaaS 3.0 进而实现智能化平台以支持决策。“智能化升级”是 mPaaS 历经两个版本迭代与升级后的自然过渡,是市场发展、客户需求驱动的结果。


数据接入+分析决策引擎+mPaaS 场景


关于智能化平台,mPaaS 主要着力点在于构建了“数据接入+分析决策引擎+mPaaS 场景”的一体化移动 AI 方案。蚂蚁金服内部最核心的 AI 技术,同时是内部构建“千人千面”所应用的技术,被剥离出来形成了决策引擎。在“运营”和“体验”两个方向下,结合 mPaaS 完善的业务应用场景,输出移动分析、智能投放、智能预测、OCR 识别等一体化垂直解决方案,让用户能够真正享受到可落地应用的人工智能服务。



数据:自带数据、标准格式


mPaaS 2.0 中已经为数据化转型实现了一整套数据采集机制,包括机型环境、用户行为、闪退卡顿、组件使用情况以及自定义事件,基于这些数据就可以对智能预测模型进行预测。


四、mPaaS 一体化移动智能场景

mPaaS 提供了从 App 研发,测试,发布,分析,运营全生命周期的管理,天然就提供了很多智能化的应用场景。


运用蚂蚁金服沉淀的 AI 技术和 mPaaS 采集的业务数据,我们可以根据用户的行为动态地创建人群归类,这就是智能预测产品。智能预测还可以和灰度发布、消息推送、智能投放等产品结合,针对有相同行为的人群提供定制化运营活动,提升留存、促进转化。



智能预测技术模型



预测一个行为会不会发生本质上是一个监督学习模型。我们抽取最近 28 天的数据,取最近的一周数据打标,给用户分类,其余的 21 天数据用于特征序列的生成,然后把所有的数据给到机器学习平台,进行模型训练。对即将到来的一周时间内的用户行为进行预测,形成人群。


在训练过程中,召回率、特异性、准确率等关键指标将被用作评估模型预测精准度。当然,不同场景下的预测模型风险承受能力不同,智能预测内置了“低置信度、中置信度及高置信度”三个级别。置信度越高,误判率相对越低,但模型能够圈定的用户量也将越少。


对于“理财推荐”场景,我们可以选择“低置信度”作为标准进行圈人,因为即使用户没有意愿购买理财产品,但营销信息的推送也是可被接受的。相反地,我们要面向即使流失的用户推送优惠券来提升留存率,那么“高置信度”是最合适的选择。


智能预测内置了两项预测任务,一项是“7 日内用户持续活跃”,另一项是“7 日内用户会流失”。同时,产品支持“自定义事件”设定,我们可以结合灰度发布为不同人群定制不一样的 App 体验,也可以结合消息推送进行针对性的营销推送。即使我们不确定哪种营销策略是最优选择,结合 ABTest 可以针对同一类人群进行深度测试。


ABTest 技术模型



通过 ABTest,我们可以知道用户喜欢什么、不喜欢什么,从而为 App 的体验优化提供更多数据支持。如图所示,支付宝面向不同用户提供不同的界面样式,从而帮助产品团队更直接地找到最优的交互方案。



ABTest 不仅仅可以为客户端体验优化提供支持,同时可以参与服务端算法、策略实验。和移动网关服务(MGS)结合,ABTest 能够方便地支持后端算法、策略实验;与移动分析服务(MAS)结合,ABTest 能够基于用户属性、行为的数据结果帮助客户制定正确的决策。


智能投放技术模型



智能投放产品能够按照用户属性、实际需求真正做到千人千面,针对性地投放广告。智能素材、智能圈人、智能推荐以及智能监控是目前支付宝内成熟应用的智能化模块:


  • 智能素材模块通过智能算法对文案、图片进行组装并渲染给用户,解决了投放内容单一、缺乏策略的弊端;

  • 智能圈人模块通过对特定事件进行模型预测以及种子用户画像进行目标人群圈定,解决了目标人群归类难的问题;

  • 智能推荐模块能够对内容进行排序,同时控制广告展示,控制广告展示的疲劳度;针对银行等金融业务特点,LR,MAB,GBDT 等常用的推荐算法已集成到引擎内部,结合 mPaaS 客户端 SDK 的统一数据采集、标准处理流程,客户能够做到在没有算法工程师的情况下实现基本的营销内容智能推荐;

  • 智能监控模块能够结合数据分析提供预警,以降低投放活动的运行风险。


同时,AI 的轻量化是蚂蚁金服不断追求的目标。AR 红包是近年春节流行的游戏, 其 70% 的扫描和识别任务都在客户端进行,只有不到 30% 的任务在服务端进行。主要是因为,蚂蚁可以通过后台的训练模型生成客户端识别模块,直接在客户端就可以完成大部分的识别。


基于 AR 红包的具体实践,mPaaS 推出了轻量化的客户端智能化解决方案。mPaaS 中的移动分析服务(MAS)提供客户端数据采集能力,底层自带的智能化平台包含与 MAS 配套的 AI 模型和决策能力,因此 mPaaS 基于本身的数据便可以展开精确的预测,并针对可能发生同类行为的群体进行灰度发布、消息推送、智能营销、ABTest 等运营手段,让智能化能力可以快速落地,无需任何系统对接和研发工作,做到真正开箱即用。


本文转载自公众号蚂蚁金服科技(ID:Ant-Techfin)。


原文链接:


https://mp.weixin.qq.com/s/uA6y5sFGX4xqaLabHFSSHg


2019-08-27 12:231764
用户头像

发布了 150 篇内容, 共 36.3 次阅读, 收获喜欢 38 次。

关注

评论

发布
暂无评论
发现更多内容

Datakit 代理实现局域网数据统一汇聚

观测云

架构实战营 第 6 期 毕业总结

火钳刘明

一文理解OpenStack网络

华为云开发者联盟

后端 网络

AntDB数据库在线培训开课啦!更灵活、更专业、更丰富

亚信AntDB数据库

数据库 AntDB 培训学习 数据库·

即构「畅直播」上线!提供全链路升级的一站式直播服务

ZEGO即构

牛客java选择题每日打卡Day1

京与旧铺

6月月更

为什么生命科学企业都在陆续上云?

阿里云弹性计算

HPC 高性能计算 生命科学 基因测序

GitHub 高赞的 Flutter 状态管理插件BLoC 简介

岛上码农

flutter ios 安卓开发 跨平台开发 6月月更

《各行业零代码企业应用案例集锦》正式发布

明道云

在shiro基础上整合jwt,可在项目中直接使用呦

阿Q说代码

springboot Java EE 权限验证 shiro整合jwt

openGauss内核:简单查询的执行

华为云开发者联盟

数据库 互联网 华为云

主数据建设的背景

奔向架构师

数据仓库 主数据 6月月更

Redis+Caffeine两级缓存,让访问速度纵享丝滑

码农参上

redis 缓存 JAVA开发 Caffeine

面试官:你说你精通Redis,你看过持久化的配置吗?

阿Q说代码

redis aof rdb 数据持久化

优酷 Android 包瘦身治理思路全解

阿里巴巴文娱技术

治理 包大小

海泰前沿技术|隐私计算技术在医疗数据保护中的应用

电子信息发烧客

心楼:华为运动健康的七年筑造之旅

脑极体

波卡生态发展不设限的奥义——多维解读平行链

One Block Community

区块链 科技

如何做到全彩户外LED显示屏节能环保

Dylan

LED显示屏 全彩LED显示屏 户外LED显示屏

如何抓手机的包进行分析,Fiddler神器或许能帮到您!

wljslmz

抓包 fiddler 6月月更

XTransfer技术新人进阶秘诀:不可错过的宝藏Mentor

XTransfer技术

职场新人 职场经验

Volcano成Spark默认batch调度器

华为云开发者联盟

云计算 数据分析 后端

畅直播|针对直播痛点的关键技术解析

ZEGO即构

直播体验升级 首帧秒开

我国SaaS产业的发展趋势与路径

小炮

“阿里健康”们的逻辑早就变了

科技新知

如何化解35岁危机?华为云数据库首席架构师20年技术经验分享

华为云开发者联盟

中年危机 经验分享 华为云

应用实践 | 海量数据,秒级分析!Flink+Doris 构建实时数仓方案

SelectDB

数据库 flink 数据分析 Doris 数仓

架构实战营 第 6 期 毕业设计

火钳刘明

#架构实战营 「架构实战营」

TDengine可通过数据同步工具 DataX读写

TDengine

数据库 tdengine 时序数据库 DataX

升哲科技 AI 智能防溺水服务上线

SENSORO

大数据 AI 物联网

建木持续集成平台v2.5.0发布

Jianmu

开源 DevOps CI/CD Worker 建木CI

AI加持的mPaaS如何打造“最懂用户”的App_AI&大模型_Geek_cb7643_InfoQ精选文章