写点什么

关于要替代 TensorFlow 的 JAX,你知道多少?

  • 2019-02-12
  • 本文字数:3550 字

    阅读完需:约 12 分钟

关于要替代TensorFlow的JAX,你知道多少?

这个简短的教程将介绍关于 JAX 的基础知识。JAX 是一个 Python 库,它通过函数转换来增强 numpy 和 Python 代码,使运行机器学习程序中常见的操作轻而易举。具体来说,它会使得编写标准 Python / numpy 代码变得简单,并且能够立即执行


  • 通过 autograd 的后继计算函数的导数

  • 及时编译函数,通过 XLA 在加速器上高效运行

  • 自动矢量化函数,并执行处理“批量”数据等


在本教程中,我们将通过演示它在 AGI 的一个核心问题:使用神经网络学习异或(XOR)函数,依次介绍这些转换。


注意:此博客文章在此处提供交互式 Jupyter notebook:https://github.com/craffel/jax-tutorial

1 JAX 只是 numpy(大多数情况下)

从本质上讲,你可以将 JAX 视为使用执行上述转换所需的机器来增强 numpy。JAX 增强的 numpy 为 jax.numpy。除了少数例外,可以认为 jax.numpy 与 numpy 可直接互换。作为一般规则,当你计划使用 JAX 的任何转换(如计算渐变或即时编译代码),或希望代码在加速器上运行时,都应该使用 jax.numpy。当 jax.numpy 不支持你的计算时,用 numpy 就行了。


import randomimport itertools
import jaximport jax.numpy as np# Current convention is to import original numpy as "onp"import numpy as onp
from __future__ import print_function
复制代码

2 背景

如前所述,我们将使用小型神经网络学习 XOR 功能。 XOR 函数将两个二进制数作为输入并输出二进制数,如下图所示:



我们将使用具有 3 个神经元和双曲正切非线性的单个隐藏层的神经网络,通过随机梯度下降训练交叉熵损失。然后实现此模型和损失函数。请注意,代码与你在标准 numpy 中编写的完全一样。


# Sigmoid nonlinearitydef sigmoid(x):    return 1 / (1 + np.exp(-x))
# Computes our network's outputdef net(params, x): w1, b1, w2, b2 = params hidden = np.tanh(np.dot(w1, x) + b1) return sigmoid(np.dot(w2, hidden) + b2)
# Cross-entropy lossdef loss(params, x, y): out = net(params, x) cross_entropy = -y * np.log(out) - (1 - y)*np.log(1 - out) return cross_entropy
# Utility function for testing whether the net produces the correct# output for all possible inputsdef test_all_inputs(inputs, params): predictions = [int(net(params, inp) > 0.5) for inp in inputs] for inp, out in zip(inputs, predictions): print(inp, '->', out) return (predictions == [onp.bitwise_xor(*inp) for inp in inputs])
复制代码


如上所述,有些地方我们想要使用标准 numpy 而不是 jax.numpy。比如参数初始化。我们想在训练网络之前随机初始化参数,这不是我们需要衍生或编译的操作。JAX 使用自己的 jax.random 库而不是 numpy.random,为不同转换的复现性(种子)提供了更好的支持。由于我们不需要以任何方式转换参数的初始化,因此最简单的方法就是在这里使用标准


的 numpy.random 而不是 jax.random。


def initial_params():    return [        onp.random.randn(3, 2),  # w1        onp.random.randn(3),  # b1        onp.random.randn(3),  # w2        onp.random.randn(),  #b2    ]
复制代码

3 jax.grad

我们将使用的第一个转换是 jax.grad。jax.grad 接受一个函数并返回一个新函数,该函数计算原始函数的渐变。默认情况下,相对于第一个参数进行渐变;这可以通过 jgn.grad 的 argnums 参数来控制。要使用梯度下降,我们希望能够根据神经网络的参数计算损失函数的梯度。为此,使用 jax.grad(loss)就可以,它将提供一个可以调用以获得这些渐变的函数。


loss_grad = jax.grad(loss)
# Stochastic gradient descent learning ratelearning_rate = 1.# All possible inputsinputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
# Initialize parameters randomlyparams = initial_params()
for n in itertools.count(): # Grab a single random input x = inputs[onp.random.choice(inputs.shape[0])] # Compute the target output y = onp.bitwise_xor(*x) # Get the gradient of the loss for this input/output pair grads = loss_grad(params, x, y) # Update parameters via gradient descent params = [param - learning_rate * grad for param, grad in zip(params, grads)] # Every 100 iterations, check whether we've solved XOR if not n % 100: print('Iteration {}'.format(n)) if test_all_inputs(inputs, params): break
复制代码


4 jax.jit

虽然我们精心编写的 numpy 代码运行起来效果还行,但对于现代机器学习来说,我们希望这些代码运行得尽可能快。这一般通过在 GPU 或 TPU 等不同的“加速器”上运行代码来实现。JAX 提供了一个 JIT(即时)编译器,它采用标准的 Python / numpy 函数,经编译可以在加速器上高效运行。编译函数还可以避免 Python 解释器的开销,这决定了你是否使用加速器。总的来说,jax.jit 可以显著加速代码运行,且基本上没有编码开销,你需要做的就是让 JAX 为你编译函数。使用 jax.jit 时,即使是微小的神经网络也可以实现相当惊人的加速度:


# Time the original gradient function%timeit loss_grad(params, x, y)loss_grad = jax.jit(jax.grad(loss))# Run once to trigger JIT compilationloss_grad(params, x, y)%timeit loss_grad(params, x, y)
复制代码


10 loops, best of 3: 13.1 ms per loop


1000 loops, best of 3: 862 µs per loop


请注意,JAX 允许我们将变换链接在一起。首先,我们使用 jax.grad 获取了丢失的梯度,然后使用 jax.jit 立即进行编译。这是使 JAX 更强大的一个因素——除了链接 jax.jit 和 jax.grad 之外,我们还可以多次应用 jax.grad 以获得更高阶的导数等。为了确保训练神经网络经过编译后仍然有效,我们再次对它进行训练。请注意,训练代码没有任何变化。


params = initial_params()
for n in itertools.count(): x = inputs[onp.random.choice(inputs.shape[0])] y = onp.bitwise_xor(*x) grads = loss_grad(params, x, y) params = [param - learning_rate * grad for param, grad in zip(params, grads)] if not n % 100: print('Iteration {}'.format(n)) if test_all_inputs(inputs, params): break
复制代码


5 jax.vmap

精明的读者可能已经注意到,我们一直在一个例子上训练我们的神经网络。这是“真正的”随机梯度下降;在实践中,当训练现代机器学习模型时,我们执行“小批量”梯度下降,在梯度下降的每个步骤中,我们对一小批示例中的损失梯度求平均值。JAX 提供了 jax.vmap,这是一个自动“矢量化”函数的转换。这意味着它允许你在输入的某个轴上并行计算函数的输出。对我们来说,这意味着我们可以应用 jax.vmap 函数转换并立即获得损失函数渐变的版本,该版本适用于小批量示例。


jax.vmap 还可接受其他参数:


  • in_axes 是一个元组或整数,它告诉 JAX 函数参数应该对哪些轴并行化。元组应该与 vmap’d 函数的参数数量相同,或者只有一个参数时为整数。示例中,我们将使用(None,0,0),指“不在第一个参数(params)上并行化,并在第二个和第三个参数(x 和 y)的第一个(第零个)维度上并行化”。

  • out_axes 类似于 in_axes,除了它指定了函数输出的哪些轴并行化。我们在例子中使用 0,表示在函数唯一输出的第一个(第零个)维度上进行并行化(损失梯度)。


请注意,我们必须稍微修改一下训练代码——我们需要一次抓取一批数据而不是单个示例,并在应用它们来更新参数之前对批处理中的渐变求平均。


loss_grad = jax.jit(jax.vmap(jax.grad(loss), in_axes=(None, 0, 0), out_axes=0))
params = initial_params()
batch_size = 100
for n in itertools.count(): # Generate a batch of inputs x = inputs[onp.random.choice(inputs.shape[0], size=batch_size)] y = onp.bitwise_xor(x[:, 0], x[:, 1]) # The call to loss_grad remains the same! grads = loss_grad(params, x, y) # Note that we now need to average gradients over the batch params = [param - learning_rate * np.mean(grad, axis=0) for param, grad in zip(params, grads)] if not n % 100: print('Iteration {}'.format(n)) if test_all_inputs(inputs, params): break
复制代码


6 指南

这就是我们将在这个简短的教程中介绍的内容,但这实际上涵盖了大量的 JAX 知识。由于 JAX 主要是 numpy 和 Python,因此你可以利用现有知识,而不必学习基本的新框架或范例。


有关其他资源,请查看 JAX GitHub:


https://github.com/google/jax 上的 notebook 和示例目录。


2019-02-12 08:056775
用户头像

发布了 98 篇内容, 共 67.8 次阅读, 收获喜欢 285 次。

关注

评论

发布
暂无评论
发现更多内容

企业遇到知识管理困境该怎么办?这里有解决方案!

Baklib

十分钟生成影视级室内设计效果,红星美凯龙设计云如何升级传统家居行业

阿里云弹性计算

gpu 智能家居 异构计算

不同学习方式的web前端程序员有什么区别

小谷哥

Kafka Topic Partition Offset 这一长串都是啥?

华为云开发者联盟

后端 华为云

字节跳动CVPR 2022多项目夺魁,获模拟人脑感知、长视频理解挑战双料冠军

字节跳动视频云技术团队

计算机视觉 图像处理 图片处理 视频理解 视频云

软件研发团队如何管理成员工时,科学分配资源?

万事ONES

零基础可以自学web前端技术吗

小谷哥

在互联网+的潮流中,企业客户服务该何去何从?

Baklib

互联网+ 客户服务

Python异常知多少

迷彩

Python 异常处理 7月月更

四个简单例子教你通过用户行为记录提高用户体验

观测云

C 语言入门(八)

逝缘~

7月月更

5个开源组件管理小技巧

SEAL安全

安全 软件供应链 开源组件

关于Java&JavaScript中(伪)Stream式API对比的一些笔记

山河已无恙

Java stream JavaScrip

【刷题记录】14.最长公共前缀

WangNing

7月月更

WhaleDI消息队列稳定性提升实践

鲸品堂

中间件

在web前端培训中怎么提升前端技术能力

小谷哥

【Docker 那些事儿】如何高效地搭建 Docker 私有仓库

Albert Edison

Docker Kubernetes 容器 云原生 7月月更

基于EasyCV复现DETR和DAB-DETR,Object Query的正确打开方式

阿里云大数据AI技术

深度学习 开源 自监督学习

字节跳动数据质量动态探查及相关前端实现

字节跳动数据平台

字节跳动 数据监控 数据探查

SQL 改写系列六:谓词推导

OceanBase 数据库

项目越写越大,我是这样做拆分的

小鑫同学

项目架构 7月月更

通过 MSE 实现基于Apache APISIX的全链路灰度

阿里巴巴云原生

Apache 阿里云 微服务 云原生 灰度发布

模块2作业

别再说你不知道函数递归了-入门知识

芒果酱

C语言 7月月更

深入揭秘 epoll 是如何实现 IO 多路复用的

C++后台开发

网络编程 epoll IO多路复用 C++后台开发 C++开发

web前端技术学习完后怎么找工作呢

小谷哥

数字藏品加速破圈,助力产业发现新机遇

智捷云

NFT 区块链数字藏品 数字藏品 智捷云 智捷云科技

利用小程序运行时技术增强Flutter跨端开发属性

Speedoooo

flutter 小程序 移动开发 小程序容器

【技术人才懂的浪漫】TiDB 社区为你准备好了给另一半的“七夕节”礼物,回复:我要挑战,即可参与活动!

TiDB 社区干货传送门

排队助手 | 2022年6月产品更新日志

天天预约

微信小程序 SaaS应用 排队工具 便民服务

零基础小白该如何选择web前端课程呢

小谷哥

关于要替代TensorFlow的JAX,你知道多少?_AI&大模型_Colin Raffel_InfoQ精选文章