10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

AI 和云技术将会给运维带来哪些变化?

  • 2019-11-05
  • 本文字数:2154 字

    阅读完需:约 7 分钟

AI和云技术将会给运维带来哪些变化?

根据 IDC 研究:2019 年全球 ICT 市场规模已经达到 5.1 万亿美元,其中数字化转型已经成为了企业的核心战略。数字化转型推动第三平台技术进入到第二篇章(第三平台技术是指以云、大数据和移动社交为核心的技术)。



IDC 中国企业级研究部助理副总裁周震刚


对企业来说,数字化转型意味着决策模式创新、运营模式创新、生产模式创新、产品服务创新和盈利模式创新。如果具体到数字化应用,IDC 中国企业级研究部助理副总裁周震刚表示:“2019 年最重要的数字化应用包括:使用微服务和容器的云平台上的敏捷应用架构;基于数据管理、认知、人工智能和机器学习的智能核心;基于云的应用程序接口策略,协调整个生态系统中的数据交换;完全支持面向客户和生态系统的业务模式的新客户体验技术。”


无论应用发展产生了哪些开发和部署的新趋势,都需要运维和监控模式去管理。20 年前的 PC 时代,应用数量可能只有成千上万个,可以用手工和人力管理,而到了移动互联网时代,应用数量暴增至上百万、上千万之后,手工管理变得不现实了,更多新的运维工具开始出现,例如,利用人工智能技术来提前规划 IT 资源、提前分析故障、预测未来趋势等等。本文就从 Dynatrace 来看看新时代的运维监控工具到底有哪些变化。

AI 如何应用在运维领域?


Dynatrace 全球销售总裁 Stephen Pace


说起 AI、云与运维的关系,Dynatrace 全球销售总裁 Stephen Pace 曾在采访中表示:“现在的应用交付主要通过云的方式来进行,特别是在这个数据爆炸的时代,面对错综复杂的数据关系,AI 正在迅速成为唯一能够为企业提供所需支持的解决方案。Dynatrace 的整个产品线以 AI 为核心,为企业提供能判断因果关系的分析,在复杂的云环境下,梳理因果关系、找到根因,迅速定位问题发生的位置,带来决策 AI 的效果。”


AI 在运维领域中有很多种不同情况的应用场景,Dynatrace 全球技术副总裁 Chuck Miller 为我们讲述了 AI 在各个阶段的应用:



Dynatrace 全球技术副总裁 Chuck Miller


  • 数据收集阶段:想要应用 AI 或者自动化,很重要的一点是要拥有高保真的数据,那么这些数据从何而来呢?OneAgent 技术可以在应用环境中自动地发现需要观测、监控的数据,包括网络、系统、容器以及微服务中的数据,收集完之后还可以把相关内容呈现出来。

  • 数据处理阶段:收集到这些数据之后,AI 引擎就可以深度处理数据。Dynatrace 系统中还包括机器学习 Built-in(内置)、自动 Baselining(基线),结合 AI 引擎就可以分析得出某些结论。

  • 根因分析:当有异常问题发生的时候,AI 引擎会自动去追踪用户的操作路径,也就是追踪服务访问和调用的路径,通过对各个不同层面监控对象的数据分析和关联,比如主机、进程、服务以及应用的数据关联,来自动分析出根因。


与传统 AI 引擎不同,Dynatrace 的 AI 引擎是为了特定目的而构建的,可以做到实时因果关系输出。传统 AI 引擎实现的是关联关系(Correlation)方式的分析,其缺点是无法实时输出,需要花费时间去学习才能看到想要的数据,很多客户可能无法接受这一缺点。


数据在 Dynatrace 平台中的流转其实是个闭环,平台将数据提供给智能化(或自动化)工具,该工具根据数据做出反应操作之后,会把结果返回给平台,得到新数据之后,可能又会触发新的动作。以此循环往复,AI 引擎的判断会越来越准确,运维的动作也会越来越精确。

云平台下的运维技术如何发展?

企业上云已经成为了一种趋势,甚至有些企业可能上的不止一朵云,根据 Kentik 公司的一项调查表明,如今 40%的组织认为自己是多云用户,他们的组织拥有两个或多个云服务提供商提供的云服务。那么上云之后的企业会面临哪些挑战?又会如何影响运维呢?


上云之后,企业往往会遇到以下挑战:


  • 环境复杂:公有云、私有云和混合云难以互通;

  • 大规模:企业上云以后,应用和数据规模都会暴增;

  • 应用动态变化:容器和微服务的技术都是动态变化的;

  • 部署频率提升:采用 DevOps 提升了软件部署和交付的效率;


Dynatrace 在服务用户的过程中,也同样发现了用户不愿意只投资单一云环境,而更倾向采用多云平台,这就要求应用监控方案可以实现跨云的自动化服务。Dynatrace 引入了自主云管理概念(Autonomous Cloud Management, ACM),以期解决 IT 复杂性难题。但 ACM 并不是一套做法就可以适用于所有用户,而是每个客户都有自己独特的部分。


实现自主云管理的第一步就是把监控自动化,将监控变成一个自主服务(self-serving)环境。其次,就是要和客户沟通流程,这也是花费时间最多的部分。最后,Dynatrace 有很多合作伙伴,他们会为 ACM 的实现补充很多功能和技术。


其实,企业上云并不单纯是把计算放在云上,有一个部分很重要,就是如何帮助企业使整个应用开发过程做得更快更好,如何优化交互,如何通过云更快速地实现回应的链路(feedback loop)。


据了解,金融行业是对 ACM 接受程度非常高的行业之一,大多数实施 ACM 的客户来自银行和保险公司。Chuck Miller 举了美国 KeyBank 银行的案例:以前 KeyBank 开发人员从写完代码到生产(包括中间过程的测试和挑战),整个过程需要三周左右,而现在从整个代码的开发到生产的时间可以“天”为单位来计算。Dynatrace 帮助他们解决了两个问题:将定位和解决问题的时间从几天缩短到几个小时。另外,正如用户希望每十分钟可以发布一个新版本那样,目前 Dynatrace 对部分问题的解决已经能达到这一标准。


2019-11-05 10:222041
用户头像

发布了 497 篇内容, 共 342.4 次阅读, 收获喜欢 1927 次。

关注

评论 1 条评论

发布
用户头像
666
2019-11-22 10:16
回复
没有更多了
发现更多内容

探索C语言程序奥秘——C语言程序编译与预处理

未见花闻

6月月更

给你讲懂 MVCC 续篇

Nick

MySQL 源码 MVCC 6月月更 深入解析

论一个优秀红队人员的自我修养

穿过生命散发芬芳

6月月更 攻防演练 自我修养

Redis 那些事

Damon

6月月更

Smartctl 打开设备遇到 Permission denied 问题排查过程记录

耳东@Erdong

Linux smart 6月月更 Permission denied

Java基础:异常处理机制

百思不得小赵

异常 javase 6月月更

TSDB在民机行业中的应用

CnosDB

IoT 时序数据库 开源社区 CnosDB infra

netty系列之:在netty中使用tls协议请求DNS服务器

程序那些事

Java Netty 程序那些事 6月月更

Java Core 「17」ThreadLocal

Samson

学习笔记 Java core 6月月更

由点到面贯穿整个Java泛型理解

知识浅谈

Java泛型

你真的需要自动化测试吗?

老张

软件测试 自动化测试

“阿里健康”们的逻辑早就变了

科技新知

谈谈飞书对开发工作的优势 | 社区征文

武师叔

初夏征文

Sumati GameFi生态纵览,神奇世界中的元素设计

鳄鱼视界

java定义属性错误_错误处理

工程师日月

6月月更

一文搞懂php中的(DI)依赖注入

乌龟哥哥

6月月更

非凸联合创始人李佐凡:将量化作为自己的终身事业

非凸科技

人工智能 机器学习 rust 量化交易 算法交易

jwt

卢卡多多

JWT 6月月更

面向对象开发

Jason199

面向对象 js 6月月更

GitHub 高赞的 Flutter 状态管理插件BLoC 简介

岛上码农

flutter ios 安卓开发 跨平台开发 6月月更

实战攻防演练中的四大特点

穿过生命散发芬芳

6月月更 攻防演练

被疫情偷走的时间都去哪了 | 社区征文

宇宙之一粟

时间管理 居家办公 6月月更 初夏征文

如何抓手机的包进行分析,Fiddler神器或许能帮到您!

wljslmz

抓包 fiddler 6月月更

波卡生态发展不设限的奥义——多维解读平行链

One Block Community

区块链 科技

疫情防控,居家办公,网上授课之心得 | 社区征文

sky

初夏征文

MCN机构遍地开花:博主和作者要谨慎签约、行业水很深

石头IT视角

Android 硬布局item的高级写法

yechaoa

android layout 6月月更

ERROR日志格式与注意点

zarmnosaj

6月月更

自动化测试

IT蜗壳-Tango

6月月更

AI和云技术将会给运维带来哪些变化?_服务革新_田晓旭_InfoQ精选文章