写点什么

AI 和云技术将会给运维带来哪些变化?

  • 2019-11-05
  • 本文字数:2154 字

    阅读完需:约 7 分钟

AI和云技术将会给运维带来哪些变化?

根据 IDC 研究:2019 年全球 ICT 市场规模已经达到 5.1 万亿美元,其中数字化转型已经成为了企业的核心战略。数字化转型推动第三平台技术进入到第二篇章(第三平台技术是指以云、大数据和移动社交为核心的技术)。



IDC 中国企业级研究部助理副总裁周震刚


对企业来说,数字化转型意味着决策模式创新、运营模式创新、生产模式创新、产品服务创新和盈利模式创新。如果具体到数字化应用,IDC 中国企业级研究部助理副总裁周震刚表示:“2019 年最重要的数字化应用包括:使用微服务和容器的云平台上的敏捷应用架构;基于数据管理、认知、人工智能和机器学习的智能核心;基于云的应用程序接口策略,协调整个生态系统中的数据交换;完全支持面向客户和生态系统的业务模式的新客户体验技术。”


无论应用发展产生了哪些开发和部署的新趋势,都需要运维和监控模式去管理。20 年前的 PC 时代,应用数量可能只有成千上万个,可以用手工和人力管理,而到了移动互联网时代,应用数量暴增至上百万、上千万之后,手工管理变得不现实了,更多新的运维工具开始出现,例如,利用人工智能技术来提前规划 IT 资源、提前分析故障、预测未来趋势等等。本文就从 Dynatrace 来看看新时代的运维监控工具到底有哪些变化。

AI 如何应用在运维领域?


Dynatrace 全球销售总裁 Stephen Pace


说起 AI、云与运维的关系,Dynatrace 全球销售总裁 Stephen Pace 曾在采访中表示:“现在的应用交付主要通过云的方式来进行,特别是在这个数据爆炸的时代,面对错综复杂的数据关系,AI 正在迅速成为唯一能够为企业提供所需支持的解决方案。Dynatrace 的整个产品线以 AI 为核心,为企业提供能判断因果关系的分析,在复杂的云环境下,梳理因果关系、找到根因,迅速定位问题发生的位置,带来决策 AI 的效果。”


AI 在运维领域中有很多种不同情况的应用场景,Dynatrace 全球技术副总裁 Chuck Miller 为我们讲述了 AI 在各个阶段的应用:



Dynatrace 全球技术副总裁 Chuck Miller


  • 数据收集阶段:想要应用 AI 或者自动化,很重要的一点是要拥有高保真的数据,那么这些数据从何而来呢?OneAgent 技术可以在应用环境中自动地发现需要观测、监控的数据,包括网络、系统、容器以及微服务中的数据,收集完之后还可以把相关内容呈现出来。

  • 数据处理阶段:收集到这些数据之后,AI 引擎就可以深度处理数据。Dynatrace 系统中还包括机器学习 Built-in(内置)、自动 Baselining(基线),结合 AI 引擎就可以分析得出某些结论。

  • 根因分析:当有异常问题发生的时候,AI 引擎会自动去追踪用户的操作路径,也就是追踪服务访问和调用的路径,通过对各个不同层面监控对象的数据分析和关联,比如主机、进程、服务以及应用的数据关联,来自动分析出根因。


与传统 AI 引擎不同,Dynatrace 的 AI 引擎是为了特定目的而构建的,可以做到实时因果关系输出。传统 AI 引擎实现的是关联关系(Correlation)方式的分析,其缺点是无法实时输出,需要花费时间去学习才能看到想要的数据,很多客户可能无法接受这一缺点。


数据在 Dynatrace 平台中的流转其实是个闭环,平台将数据提供给智能化(或自动化)工具,该工具根据数据做出反应操作之后,会把结果返回给平台,得到新数据之后,可能又会触发新的动作。以此循环往复,AI 引擎的判断会越来越准确,运维的动作也会越来越精确。

云平台下的运维技术如何发展?

企业上云已经成为了一种趋势,甚至有些企业可能上的不止一朵云,根据 Kentik 公司的一项调查表明,如今 40%的组织认为自己是多云用户,他们的组织拥有两个或多个云服务提供商提供的云服务。那么上云之后的企业会面临哪些挑战?又会如何影响运维呢?


上云之后,企业往往会遇到以下挑战:


  • 环境复杂:公有云、私有云和混合云难以互通;

  • 大规模:企业上云以后,应用和数据规模都会暴增;

  • 应用动态变化:容器和微服务的技术都是动态变化的;

  • 部署频率提升:采用 DevOps 提升了软件部署和交付的效率;


Dynatrace 在服务用户的过程中,也同样发现了用户不愿意只投资单一云环境,而更倾向采用多云平台,这就要求应用监控方案可以实现跨云的自动化服务。Dynatrace 引入了自主云管理概念(Autonomous Cloud Management, ACM),以期解决 IT 复杂性难题。但 ACM 并不是一套做法就可以适用于所有用户,而是每个客户都有自己独特的部分。


实现自主云管理的第一步就是把监控自动化,将监控变成一个自主服务(self-serving)环境。其次,就是要和客户沟通流程,这也是花费时间最多的部分。最后,Dynatrace 有很多合作伙伴,他们会为 ACM 的实现补充很多功能和技术。


其实,企业上云并不单纯是把计算放在云上,有一个部分很重要,就是如何帮助企业使整个应用开发过程做得更快更好,如何优化交互,如何通过云更快速地实现回应的链路(feedback loop)。


据了解,金融行业是对 ACM 接受程度非常高的行业之一,大多数实施 ACM 的客户来自银行和保险公司。Chuck Miller 举了美国 KeyBank 银行的案例:以前 KeyBank 开发人员从写完代码到生产(包括中间过程的测试和挑战),整个过程需要三周左右,而现在从整个代码的开发到生产的时间可以“天”为单位来计算。Dynatrace 帮助他们解决了两个问题:将定位和解决问题的时间从几天缩短到几个小时。另外,正如用户希望每十分钟可以发布一个新版本那样,目前 Dynatrace 对部分问题的解决已经能达到这一标准。


2019-11-05 10:222099
用户头像

发布了 509 篇内容, 共 349.3 次阅读, 收获喜欢 1927 次。

关注

评论 1 条评论

发布
用户头像
666
2019-11-22 10:16
回复
没有更多了
发现更多内容

软件测试/测试开发丨Selenium Web自动化测试 高级控件交互方法

测试人

Python 程序员 软件测试 自动化测试 selenium

如何调试 C# Emit 生成的动态代码?

互联网工科生

C# Emit

关于低代码这件事儿

互联网工科生

低代码 应用开发 可视化开发

总投入超5000万元的开源大赛火热报名中

开放原子开源基金会

开源

墨迹天气黄耀海:深耕气象技术并与服务场景深度融合,AI全面激活气象服务的跃迁

极客天地

软件测试 | AI革命性技术未来的领域

测吧(北京)科技有限公司

测试

人工智能对游戏世界的革新

测吧(北京)科技有限公司

测试

小灯塔系列-中小企业数字化转型系列研究——固定资产管理测评报告

向量智库

Databend 开源周报第 109 期

Databend

RabbitMQ 如何实现延迟队列?

王磊

Java Java面试题

网线,是选圆线还是扁线?什么材质优选?

小齐写代码

安全攻防丨反序列化漏洞的实操演练

华为云开发者联盟

安全 开发 华为云 华为云开发者联盟 企业号9月PK榜

软件测试/测试开发丨Python 数据结构与算法

测试人

Python 程序员 软件测试 测试开发

Wasm软件生态系统安全分析

OpenHarmony开发者

OpenHarmony

愿意折腾、相信未来的年青人,都在2050

赵新龙

TGO鲲鹏会 2050

AI如何改变设觉特效

测吧(北京)科技有限公司

测试

软件测试/测试开发丨Web自动化测试 关键数据记录

测试人

Python 程序员 软件测试 自动化测试 测试开发

点对点传输技术在智能交通中的应用:实现车辆间的实时通信

镭速

大文件传输 点对点文件传输

汇聚开源力量,赋能软件发展,开放原子开源基金会携开源展区亮相软博会,开源展区现场引关注!

开放原子开源基金会

开源

row_number函数的不稳定性

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号9月PK榜

什么样的家庭条件,现在还招人?

赵新龙

TGO鲲鹏会 招聘

校源行丨2023开放原子校源行开源大使名单

开放原子开源基金会

八个针对高级职位的高级 JavaScript 面试题

树上有只程序猿

JavaScript 程序员 面试

一文读懂GPU的十个重要参数

Finovy Cloud

gpu GPU服务器 GPU渲染

2023最新大数据传输慢的真正原因与对应解决方案

镭速

大文件传输 大数据传输

孙文龙理事长参加第二十五届中国国际软件博览会开幕式并发表主题演讲

开放原子开源基金会

打造次世代分析型数据库(一):CDW PG全面升级

腾讯云大数据

数据库

AI和云技术将会给运维带来哪些变化?_服务革新_田晓旭_InfoQ精选文章