限时领|《AI 百问百答》专栏课+实体书(包邮)! 了解详情
写点什么

搭建基于 S3 的 HBase 读备份集群

  • 2019-11-11
  • 本文字数:3678 字

    阅读完需:约 12 分钟

搭建基于S3的HBase读备份集群

当前 aws 的很多客户已经从将 s3 作为 HBase 的存储中获益,这当中包括更低的存储花费、更好的数据可靠性、更容易的扩展操作等待。比如 FINRA 就通过将 HBase 迁移到 s3 上将在存储上的花费降低了 60%,此外还带来了运维上的便利,以及架构上的重大优化:将 s3 作为统一的存储层,实现了更彻底的存储和计算分离。在 s3 上部署 HBase 集群,可以让你在集群启动后立即进行数据查询操作,而不用等待漫长的快照恢复过程。


随着 Amazon EMR 5.7.0 的发布,现在你可以在集群层面进一步提升数据的高可用性和高可靠性,方法是基于同一个 s3 存储桶建立多个 HBase 的读备份集群。这会让你的数据通过读备份集群及时地被用户访问,即使在主集群遇到问题关闭的时候,当然你还可以通过在多个可用区中部署读备份集群来进一步增加数据访问服务的可靠性。


接下来的文章将告诉你如何在 s3 上建立 HBase 的读备份集群。

HBase 简介

Apache HBase 是 Apache Hadoop 生态体系中的大规模、可扩展、分布式的数据存储服务。同时它还是开源的,非关系型的版本数据库,默认情况下运行在 HDFS 之上。它的设计初衷是为包含了数百万个列的数十亿行记录提供随机的、强一致性的、实时访问。同时它还和 Apache Hadoop、Apache Hive 和 Apache Pig 等大数据服务紧密结合,所以你可以轻易地为并行数据处理提供快速的数据访问。HBase 数据模型、吞吐量、和容错机制能很好地为广告、web 分析、金融服务和基于时间序列数据的应用等工作负载提供支持。


和其他很多 Nosql 数据库类似,HBase 中的表设计直接影响着数据的查询和访问模式,根据这些模式的不同,查询的性能表现也会有非常大的差异。

HBase on S3

在建立基于 S3 的 HBase 读备份集群之前,你必须先学会 HBase on S3 的部署方法,本段为那些不熟悉 HBase on S3 架构的人提供了一些基本信息。


你可以通过将 S3 作为 HBase 的存储层,来分离集群的存储和计算节点。这使得你可以根据计算需求来规划集群,从而削减开支,毕竟你不再需要为 HDFS 上存储的 3 备份数据支付费用了。


HBase on S3 架构中的默认 EMR 配置使用内存和本地磁盘来缓存数据,以此来提升基于 S3 的读性能。你可以在不影响底层存储的情况下任意地对计算节点进行伸缩,或者你还可以关闭集群来节省开支,然后快速地在另一个 AZ 中重新进行部署。

HBase on S3 读备份集群应用案例

使用 HBase on S3 架构使得你的数据被安全、可靠地存储起来。它将数据和集群隔离进行存储,消除了因为集群异常终止带来数据丢失的可能性。尽管如此,在一些特殊情况下,你还是会希望数据能获得更高的可用性,比如集群异常终止或者整个 AZ 失效。另外一个情况是,通过多个集群访问一个 S3 上的根目录,你可以隔离 HBase 集群的读写操作,从而来降低集群的压力,提供更高 SLA 的查询服务。尤其是在主集群因为 bulk load、heavy write、compaction 等操作变得异常繁忙的时候。


下图展示了没有读备份的 HBase on S3 架构,在这个场景下,诸如集群终止和 AZ 失效等异常情况会使得用户无法访问数据。


S3 上的 HBase 根目录,包含了 HFile 和表的原数据信息。



EMR 5.7.0 之前的版本,无法将多个 HBase 集群指向同一个 S3 上的根目录,为了获得更高的可用性,你需要在 S3 上创建多个数据副本,并管理它们之间的一致性。



随着 EMR 5.7.0 的发布,现在你可以启动多个读备份集群并指向 S3 桶上同一个根目录,保证了你的数据通过读备份集群它们总是可达的。



下面是一些使用 HBase 读备份集群的例子,展示了启用前后的一些对比情况。


处于同一个 AZ 的 HBase 读备份集群:





处于不同 AZ 的 HBase 读备份集群:




基于 S3 的 HBase 读备份集群的另一个好处是可以更加灵活地根据具体的工作负载来规划你的集群。比如,虽然你的读负载很低,但还是想要获得更高的可用性,那么就可以启动一个由较小实例组成的规模较小的集群。另一个例子是当你遭遇 bulk load 时,在高峰期集群需要扩张到很大以满足计算需求,在 bulk load 结束后,集群可以立即缩减以节省开支。在主集群伸缩的时候,读备份集群可以维持一个固定的规模以对外提供稳定的查询服务。

步骤

使用下列的步骤来启动基于 S3 的 HBase 读备份集群,这项功能只针对 EMR 5.7.0 之后的版本。

创建使用 HBase on S3 的 EMR 集群:

Java


aws emr create-cluster --termination-protected --applications Name=Hadoop Name=Hive Name=HBase Name=Spark Name=Phoenix --ec2-attributes '{"KeyName":""}' --release-label emr-5.7.0 --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"m3.xlarge","Name":"Master - 1"},{"InstanceCount":20,"BidPrice":"0.15","InstanceGroupType":"CORE","InstanceType":"m3.2xlarge","Name":"Core - 2"}]' --configurations '[{"Classification":"emrfs-site","Properties":{"fs.s3.consistent.retryPeriodSeconds":"1","fs.s3.consistent":"true","fs.s3.consistent.retryCount":"5","fs.s3.consistent.metadata.tableName":"YOUR_CONSISTENT_VIEW_TABLE_NAME"},"Configurations":[]},{"Classification":"hbase","Properties":{"hbase.emr.storageMode":"s3","hbase.emr.readreplica.enabled":"true"},"Configurations":[]},{"Classification":"hbase-site","Properties":{"hbase.rootdir":"s3:///"},"Configurations":[]}]' --service-role EMR_DefaultRole --name 'HBase Read Replica'
复制代码


配置文件示例 JSON


Java


[    {       "Classification":"hbase-site",      "Properties":{          "hbase.rootdir":"s3://{S3_LOCATION}",      }   },   {       "Classification":"hbase",      "Properties":{          "hbase.emr.storageMode":"s3",         "hbase.emr.readreplica.enabled":"true"      }   }]
复制代码

向主集群添加数据

需要特别注意的是,在使用 HBase 读备份集群时,你必须要确保主集群上所有的写操作都被刷新到 S3 桶的 HFile 中。读备份集群会读取这些 HFile 中的数据,任何没有从 Memstore 刷新到 S3 的数据都不能通过读备份集群访问。为了确保读备份集群总是读到最新的数据,请参考以下步骤:


  • 写入数据到主集群(大批量写入请使用 Bulkload)

  • 确保数据被刷新到 S3 桶中(使用 Flush 命令)

  • 等待 region 分割以及合并操作完成以确保 HBase 表的元数据信息保持一致性状态

  • 如果任何 region 发生了分割、合并操作,或者表的元数据信息发生了变化(表的增加和删减),请在从集群上运行 refresh_meta 命令

  • 当 HBase 表发生更新操作后,请在从集群上运行 refresh_hfiles 命令

从备份集群读区数据

你可以像往常一样从备份集群检索任何数据。


从主集群读取数据的截图:



从备份集群读取数据的截图:



可以看出,两个集群返回了同样的数据。


保持备份集群和主集群的一致性


为了保持备份集群数据和主集群的一致性,请参考以下建议:


在备份集群上:


1.运行 refresh_hfiles 命令:


  • HBase 表中的数据发生变化时(增、删、改)


2.运行 refresh_meta:


  • Region 发生变化时(splits,compacts)或者集群中增加、删除了 HBase 表


在主集群上:


1.如果启用了 compaction,运行 compaction 命令以避免 Major Compation 被触发引起数据的不一致性。


相关的属性和命令:


HBase 属性:


        col 1             |  col 2  |                                         col 3                                        
复制代码


:-----------------------------:|:-------:|:-------------------------------------------------------------------------------------:


Config | Default | Ex planation


hbase.meta.table.suffix | “” | Adds a suffix to the meta table name: value=’test’ -> ‘hbase:meta_test’


hbase.global.readonly.enabled | False | Puts the entire cluster into read-only mode


Hbase.meta.startup.refresh | False | Syncs the meta table with the backing storage. Used to pick up new tables or regions.


如果 hbase.emr.readreplica.enabled 被设置为 true,那么上述属性会被自动设置好。


HBase 命令:


col 1col 2
CommandDescription
refresh_hfiles <TablenameRefreshes HFiles from disk. Used to pick up new edits on a read replica.
clear_block_cacheClears the cache for the specified table.
refresh_metaSyncs the meta table with the backing storage. Used to pick up new tables/regions.

总结

现在你可以为 HBase 建立高可用的读备份集群,通过它,在主集群发生异常情况时,你仍然可以获取稳定的数据查询服务。


作者介绍



刘磊,AWS 大数据顾问,曾供职于中国银联电子支付研究院,期间获得上海市科技进步一等奖,并申请 7 项国家发明专利。现任职于 AWS 中国专家服务团队,致力于为客户提供基于 AWS 服务的专业大数据解决方案、项目实施以及咨询服务。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/build-a-hbase-read-backup-cluster-based-on-s3/


2019-11-11 08:001028

评论

发布
暂无评论
发现更多内容

阿联酋区块链大会“DCS 2021 ” 闭幕 Hoo虎符成会展焦点

区块链前沿News

DCS 虎符 Hoo 虎符交易所 DCS 2021

打气球

Tiger

28天写作

语音合成(TTS)技术在有道词典笔中的应用实践

有道技术团队

人工智能 语音合成 网易有道

通过元宇宙远程上班有的搞吗?

王字 Wannz

虚拟现实 元宇宙 凡泰极客

小程序的昨日与今天

王字 Wannz

小程序 小程序生态 开发框架 finclip

从高盛的技术“开源”看金融业软件发展未来

王字 Wannz

金融科技 开源项目 开源技术 小程序框架

给弟弟的信第18封|除了自己,你谁也改变不了

大菠萝

28天写作

Python代码阅读(第70篇):删除列表一边的n个元素

Felix

Python 编程 Code 列表 阅读代码

Java、Go 和 Rust 的比较

百度开发者中心

Java Go rust

DataPipeline与飞腾完成产品兼容性互认证,携手共建自主IT底层生态

DataPipeline数见科技

cpu 数字化转型 中间件 数据融合 数据管理

Flink CDC 系列 - 实时抽取 Oracle 数据,排雷和调优实践

Apache Flink

大数据 flink 编程 实时计算 CDC

盘点 2021 征文大赛|记录你的年度闪光时刻!

InfoQ写作社区官方

盘点2021 热门活动

Atlassian 被 Forrester Wave 评选为企业服务管理的领导者!

Atlassian

Atlassian Jira 协作 ITSM Confluence

恒源云(GPUSHARE)_云GPU服务器如何使用Spyder?

恒源云

人工智能 #python 算力加速

开发小程序的正确方式

王字 Wannz

小程序 小程序制作 finclip 凡泰极客 小程序框架

权威专访|对话凡泰极客联合创始人杨涛: 小程序生态市场潜力广阔

王字 Wannz

小程序 移动应用 小程序生态 凡泰极客

公安合成作战指挥系统开发,情指勤舆一体化平台建设

电微13828808271

决战下半场:小程序技术助力金融 APP 重回 C 位

王字 Wannz

小程序 移动应用 数字化时代 finclip

数字化转型时代,如何让你的 App 摆脱“内卷”?

王字 Wannz

小程序 去中心化 finclip 互联网生态

浅谈前端角色权限方案

王字 Wannz

前端 权限控制 finclip

Flink Hudi 0.10.0 发布,多项重要更新,稳定性大幅提升

Apache Flink

大数据 flink 编程 数据湖 Hudi

智慧警务系统建设方案,公安重点人员动态管控系统开发

电微13828808271

IP创作

张老蔫

28天写作

CameraX入门笔记

Changing Lin

12月日更

京东金融云,三年造五力

脑极体

架构实战营第 4 期 -- 模块三作业

烈火干柴烛灭田边残月

架构实战营

问诊把脉“实景三维业务发展瓶颈在哪里”和“御医良方”

焱融科技

云计算 云原生 GIS 高性能 文件存储

微前端技术在游戏平台后台系统的实践

bilibili游戏技术

游戏

你未必知道的 WebRTC – 前世、今生、未来

王字 Wannz

WebRTC 音频技术 元宇宙

【MongoDB学习笔记】MongoDB 快速入门

恒生LIGHT云社区

数据库 mongodb

从零到一,我也能写小程序

王字 Wannz

小程序 小程序市场 finclip 小程序框架

搭建基于S3的HBase读备份集群_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章