2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

AI 产品开发:技术、市场和道德的挑战

  • 2023-09-21
    北京
  • 本文字数:1433 字

    阅读完需:约 5 分钟

大小:817.22K时长:04:38
AI产品开发:技术、市场和道德的挑战

开发人工智能(AI)产品涉及创建模型、输入数据以训练模型、测试模型以及部署模型。软件工程师可以通过建立对人工智能和机器学习(ML)技术的理解、鼓励实验以及确保遵循法规和道德标准,为公司采用人工智能和机器学习(ML)提供支持。

 

Zorina Alliata 在OOP 2023 Digital会议上谈到了人工智能产品的开发。

 

Alliata 说到,要创建预测软件或推荐引擎等人工智能产品,我们必须根据历史数据中的模式创建模型。为了开发这些模型,我们会使用不同于常规软件开发的技术。例如,在分析数据时,会有很多未知因素、迭代过程和谜题。

 

按照 Alliata 的说法,机器学习过程要基于如下的步骤:

输入数据到算法中

利用这些数据训练模型

测试和部署模型

利用已部署的模型执行自动预测任务

 

Alliata 认为,数据极其重要。算法需要大量的数据来学习模式。她说,光是拥有足够的数据、干净的数据、公平可信的数据,就是一个全新的处理水准,我们过去从来没有做到这种程度。

 

Alliata 提到,产品开发的结果,也就是模型,是一系列在数据海洋中识别各种信息的算法,大多数时候,数据科学家必须要尝试多种算法,看看哪种算法在每个用例中的效果最好。这就引入了迭代和尝试各种方法的需求,因此团队领导必须明白,他们需要在建模阶段留出足够的时间。

 

Alliata 说,人工智能产品交付后,还需要持续的维护和监控,以确保它在模式可能发生变化时仍能发挥最佳效果,有时,模型需要重新训练,以便从消费者提供的最新数据以及自身行为和性能的反馈中进行学习。

 

Alliata 说,软件工程师可以通过了解这些新技术及其具体的挑战,为公司采用 AI 和 ML 做出贡献。她补充说,软件工程师还可以帮助创造一个鼓励实验和学习的环境,并为 AI 开发的最佳实践提供指导。

 

除此之外,软件工程师还能帮助确保 ML 模型符合相关法规和道德标准。Alliata 总结说,制定标准和清晰的运维模式将有助于所有团队(技术和业务团队)之间更好地沟通与协作。

 

就 AI 产品的开发,InfoQ 采访了Zorina Alliata

 

InfoQ:AI 转型与敏捷有什么关系?

Zorina Alliata:AI 转型与敏捷的关系在于,它们都涉及到一个过渡过程。敏捷领导者可以通过推动精益预算、敏捷团队和小团队组成大团队(teams of teams)、快速失败的敏捷交付以及展示交付价值的具体报告,在 AI 转型中发挥重要作用。

 

敏捷领导者利用他们在管理培训计划和内容、推动卓越技术、检查合规性/偏见/公平性特性方面的敏捷专业知识,并根据需要对当前流程提出修改建议,以实现可扩展性,从而为 AI 转型带来价值。

 

敏捷领导者还知道如何正确、准时地交付,为重要的 KPI 和趋势创建度量指标,并提供工作的可见性。在 AI 转型的过程中,所有这些技能都是非常有用和需要的。

 

InfoQ:你从 AI 产品交付中学到了什么呢?

Alliata:数据有可能在未来被篡改,这是我历经艰辛发现的。例如,当我们应用数据修复时,无意间改变了旧记录,哪怕是轻微的改变,也会导致这种情况。然后,我们在旧数据上训练 ML 模型,希望能捕获到它在记录时的状态,但事实上,数据已经被修改过了。

 

其次是基础设施,你需要训练模型,然后发布模型,并使其保持在更新的状态。用于编写 ML 模型和监控 ML 模型的环境和工具必须符合公司的安全标准和监管要求。AI 和 ML 产品的基础设施架构是不同的,需要一些前期投资,还需要专门的支持角色,如机器学习工程师。

 

原文链接:

 The Challenges of AI Product Development


相关阅读:

亚马逊云科技推出基于生成式AI的临床文档工具HealthScribe预览版

强制向开发者提AI建议再引公愤,GitHub:我知道你们很不满,但我不改

2023-09-21 08:004997

评论

发布
暂无评论
发现更多内容

OpenMLDB在AKULAKU实时特征计算场景的应用

第四范式开发者社区

机器学习 大数据 OpenMLDB 特征平台

流计算 Oceanus | Flink JVM 内存超限的分析方法总结

腾讯云大数据

flink 实战 流计算 Oceanus

StreamNative 联合传智教育推出免费 Apache Pulsar 中文视频教程

Apache Pulsar

大数据 开源 架构 云原生 Apache Pulsar

低代码实现探索(二十六)移动端H5开发

零道云-混合式低代码平台

架构实战营:模块六作业

Geek_93ffb0

「架构实战营」

Nacos电子书 读后感(一)

努力努力再努力

1月日更

【网络研讨会】“专家面对面”-MongoDB模式设计

MongoDB中文社区

mongodb

用11本白皮书搭建3座桥:联想企业科技集团让智能化转型不再有孤岛

脑极体

Kubernetes 下部署 JMeter 集群

zuozewei

Jmeter 性能测试 1月月更

安全研究人员发现:Nanocore等多个远控木马滥用公有云服务传播

H

网络安全

网络安全kali渗透学习 web渗透入门 ARL资产侦察灯塔系统搭建及使用

学神来啦

Flink 实践教程-进阶(7):基础运维

腾讯云大数据

flink 实战 流计算 Oceanus

使用hydra对端口进行爆破

喀拉峻

明道云助力东航食品营销数据整合

明道云

喜报!东方证券携手博睿数据荣获《金融电子化》2021科技赋能金融业务突出贡献奖

博睿数据

架构实战营-毕业设计

Beyond Ryan

markdown-it 插件如何写(二)

冴羽

前端 markdown vuepress markdown-it markdown-it插件

哲元科技×飞桨EasyDL|助力世界500强企业打造“灯塔工厂”,探索智能制造星辰大海

百度大脑

i人事CTO王景飞:i人事+计算巢,协同赋能HR业务

阿里云弹性计算

阿里云 计算巢

RadonDB PostgreSQL on K8s 2.1.0 发布!

RadonDB

数据库 postgresql 开源 RadonDB

通证经济是更高层次的自由

CECBC

12月云短信报告出炉,阿里云闯进前三

博睿数据

消息队列 RocketMQ 遇上可观测:业务核心链路可视化

阿里巴巴云原生

阿里云 RocketMQ 云原生 消息队列 可观测

架构实战营-毕业设计

Beyond Ryan

macOS下 Hive 2.x 的安装与配置

JavaEdge

1月月更

低代码实现探索(二十七)低代码如何继承传统

零道云-混合式低代码平台

精彩回顾!| Google DevFest 2021 广州国际嘉年华

江湖老铁

征文投稿丨使用轻量应用服务器部署Hadoop云集群

阿里云弹性计算

hadoop 轻量应用 征文投稿

简单的线程池实现多线程对大文件的读取

CRMEB

浪花过后,2022低代码该往哪儿走?

ToB行业头条

云信小课堂|如何实现音视频安全检测?

网易云信

安全 音视频

AI产品开发:技术、市场和道德的挑战_AI 工程化_Ben Linders_InfoQ精选文章