阿里、蚂蚁、晟腾、中科加禾精彩分享 AI 基础设施洞见,现购票可享受 9 折优惠 |AICon 了解详情
写点什么

伯克利开源 Ray Tune:大规模 AI 实验利器

  • 2020-02-26
  • 本文字数:3744 字

    阅读完需:约 12 分钟

伯克利开源Ray Tune:大规模AI实验利器

在本文中,我们将跟大家分享开发两个重要软件库Ray TuneRay Cluster Launcher 的经验, 这两个库现在支持很多流行的开源 AI 库,很多BAIR研究人员用它们来执行大规模 AI 实验。



随着 AI 研究变得越来越注重计算,很多 AI 研究人员的时间和资源都越来越紧缺。现在,很多研究人员依赖 AWS 或谷歌计算平台等云供应商,以获取训练大型模型所需的大量计算资源。

理解研究基础设施

为了更全面地理解这些内容,我们首先来看看业界的标准机器学习工作流(图 1)。



图 1 展示了业界典型的机器学习模型开发工作流


典型的“研究”工作流实际是步骤 2 和 3 之间的紧密循环,大致如图 2 所示。



图 2 展示了用于研究的典型机器学习模型开发工作流。该研究工作流通常是业界工作流的一个分支。


该研究工作流在很大程度上是个迭代的过程,通常受到实验执行步骤(如图 2 中的 B 所示)的制约。通常,一个“实验”包括多个训练作业或“试验”,其中每个试验都是训练单个模型的任务。每个试验可能使用一组不同的配置参数(超参数)或不同的种子来训练一个模型。


在伯克利,我们看到转向云的 AI 研究人员花费大量时间来编写自己的实验执行工具,这些工具整理云供应商的 API 以启动实例、设置依赖项和启动实验。


不幸的是,除了开发这些工具所要投入的大量时间以外,这些临时的解决方法还常常在功能上受到限制:


  • 简化的架构:每个试验通常在单独的节点上启动,没有任何集中控制逻辑。这让研究人员难以实施优化技术,如基于群体的训练(Population-based Training)贝叶斯优化(Bayesian Optimization),这些技术需要在不同的运行之间进行协调。

  • 缺乏故障处理:如果实例失败,那么训练作业的结果会永远丢失。研究人员常常在电子表格上跟踪实时实验来手动管理故障转移,但是,这么做既费时又容易出错。

  • 没有竞价性实例折扣(Spot Instance Discount):缺乏容错能力也意味着放弃云供应商提供的竞价性实例折扣(最高可达90%)。


总之,在云资源上测试和管理分布式实验既费力又容易出错。因此,采用易于使用的框架以在执行和研究之间架起桥梁可以大大加快研究过程。来自 BAIR 的几个实验室成员协作构建了两个互补的工具,用于在云中进行 AI 实验:


Ray Tune:用于训练和超函数调优的容错框架。具体来说,Ray Tune(或简称“Tune”):


  1. 协调并行作业以支持并行超参数优化

  2. 自动检查点,并在机器有故障时恢复训练作业。

  3. 提供了很多最先进的超参数搜索算法,如基于群体的训练( Population-based Training)和HyperBand


Ray Cluster Launcher:一个实用程序,用于管理 AWS、GCP 和 Kubernetes 之间的资源调配和集群配置。

Ray Tune

为了克服这些临时实验执行工具的缺点,我们构建了 Tune,利用了 Ray Actor API 并添加故障处理来解决问题。

基于 Actor 的训练

很多用于超参数优化的技术需要一个框架来监视所有并发训练作业的指标并控制训练执行。为了解决这个问题,Tune 使用一种 master-worker 架构来集中决策,并使用 Ray Actor API 的分布式 worker 来通信。


什么是 Ray Actor API?Ray 提供一个API从一个 Python 类来创建一个“actor”。这使得类和对象可以在并行和分布式设置中使用 。



Tune 使用一个可训练的(Trainable)类接口来定义一个 actor 类,这个类专门用于训练模型。该接口公开了如_train、_stop、_save 和_restore 等方法,这些方法允许 Tune 监视中间的训练指标并杀死效果不佳的试验。


class NewTrainable(tune.Trainable):    def _setup(self, config):        ...    def _train(self):        """Run 1 step of training (e.g., one epoch).        Returns:            A dict of training metrics.        """        ...    def _save(self, checkpoint_dir):        ...    def _restore(self, checkpoint_path):        ...
复制代码


更重要的是,通过利用 Actor API,我们可以在 Tune 中实施并行超参数优化模式,如HyperBand和并行贝叶斯优化,而这些是研究人员以前使用的实验执行工具无法做到的。

容错

云供应商常常以很大的折扣提供“可抢占的实例”(如,竞价型实例)。大幅度的折扣使得研究人员可以显著地降低其云计算成本。但是,缺点是云供应商可以在任何时候终止或停止运转我们的机器,导致我们丢失训练进度。


为了可以使用竞价型实例,我们构建了 Tune 以在集群不同的机器中自动地建立检查点并恢复训练作业,这样,实验将对抢占和集群大小的调整具有弹性。


# Tune will resume training jobs from the last checkpoint# Tune将从最新的检查点恢复训练作业# even if machines are removed.#即使机器已被删除。analysis = tune.run(    NewTrainable,    checkpoint_freq=5,  # Checkpoint every 5 epochs    config={"lr": tune.grid_search([0.001, 0.01, 0.1])},)
复制代码

它是如何工作的?


如果在某个节点丢失的时候,有个训练作业仍在其上执行且该训练作业(试验)的检查点存在,那么,Tune 将一直等到有可用资源可用,以再次执行该试验。


如果该试验被放置在一个不同的节点上,那么,Tune 将自动把之前的检查点文件推送到那个节点并恢复状态,即使失败,该试验也可以从最新的检查点恢复。

Ray Cluster Launcher

上面,我们描述了为自动化集群设置过程而整理云供应商 API 的痛苦之处。但是,即使有了用于分解集群的工具,研究人员还是必须经过繁琐的工作流才能进行实验:



为了简化一下这个过程,我们构建了 Ray Cluster Launcher,这个工具会调配资源并自动调整资源大小,并且在 AWS EC2、GCP 和 Kubernetes 上启动一个 Ray 集群。然后,我们把以上用于进行一个实验的步骤抽象成一个简短的配置文件和一个命令:


# CLUSTER.yamlcluster_name: tune-defaultprovider: {type: aws, region: us-west-2}auth: {ssh_user: ubuntu}min_workers: 0max_workers: 2# Deep Learning AMI (Ubuntu) Version 21.0head_node: {    InstanceType: c4.2xlarge,    ImageId: ami-0b294f219d14e6a82}worker_nodes: {    InstanceType: c4.2xlarge,    ImageId: ami-0b294f219d14e6a82}setup_commands: # Set up each node.    - pip install ray numpy pandasfile_mounts: {  '/home/ubuntu/files':'my_files/',}
复制代码


下面的命令用来启动一个集群、上传并运行一个用于分布式超参数调整的脚本,然后关闭该集群。


$ ray submit CLUSTER.yaml --start --stop tune_experiment.py \--args="--address=auto"
复制代码


研究人员现在使用 Ray Tune 和 Ray Cluster Launcher 同时在数十台 GPU 机器上启动数百个并行作业。Ray Tune的分布式实验文档页面展示了如何执行该操作。

总结

在过去的一年中,我们一直和 BAIR 不同的团队合作,以更好地让研究人员利用云。我们必须让 Ray Tune 和 Ray Cluster Launcher 变得足够通用,以支持大量研究代码库,与此同时,要把上手门槛降到人人可以在几分钟内尝试一下的程度。


# An example Ray Tune script for PyTorch.import torch.optim as optimfrom ray import tunefrom ray.tune.examples.mnist_pytorch import (    get_data_loaders, ConvNet, train, test)class TrainMNIST(tune.Trainable):    def _setup(self, config):        self.train_loader, self.test_loader = get_data_loaders()        self.model = ConvNet()        self.optimizer = optim.SGD(            self.model.parameters(), lr=config.get("lr", 0.01))    def _train(self):        train(self.model, self.optimizer, self.train_loader)        acc = test(self.model, self.test_loader)        return {"mean_accuracy": acc}    def _save(self, checkpoint_dir):        checkpoint_path = os.path.join(checkpoint_dir, "model.pth")        torch.save(self.model.state_dict(), checkpoint_path)        return checkpoint_path    def _restore(self, checkpoint_path):        self.model.load_state_dict(torch.load(checkpoint_path))analysis = tune.run(    TrainMNIST,    stop={"training_iteration": 50},    config={"lr": tune.grid_search([0.001, 0.01, 0.1])})print("Best hyperparameters: ", analysis.get_best_config(    metric="mean_accuracy"))# Get a dataframe for analyzing trial results.df = analysis.dataframe()
复制代码


Tune 已经成长为一个流行的超参数调整开源项目。很多其他流行的研究项目也在使用它,从基于群体的数据增强( Population-based Data Augmentation)项目到用于AllenNLP的超参数调整( Hyperparameter Tuning)以及 AnalyticsZoo 的AutoML


BAIR 的很多开源项目现在都依赖 Ray Tune 和 Ray Cluster Launcher 的组合来编排和执行分布式实验,其中包括 rail-berkeley 的softlearning、HumanCompatibleAI 的对抗策略(adversarial-policies),以及流项目(flow-project)的流。


来,动手尝试一下Ray Tune和 Ray Cluster Launcher 吧!

相关链接


原文链接:


Large Scale Training at BAIR with Ray Tune


公众号推荐:

2024 年 1 月,InfoQ 研究中心重磅发布《大语言模型综合能力测评报告 2024》,揭示了 10 个大模型在语义理解、文学创作、知识问答等领域的卓越表现。ChatGPT-4、文心一言等领先模型在编程、逻辑推理等方面展现出惊人的进步,预示着大模型将在 2024 年迎来更广泛的应用和创新。关注公众号「AI 前线」,回复「大模型报告」免费获取电子版研究报告。

AI 前线公众号
2020-02-26 19:003844

评论

发布
暂无评论
发现更多内容

如何应对复杂任务

Bruce Talk

敏捷开发 TDD Agile

月活超 1.1 亿,用户超 4 亿,你也在用的「知乎」是如何在超大规模 TiDB 集群上玩转多云多活的?来听听知乎代晓磊的答案!

PingCAP

数据库 TiDB

唐刘:关于产品质量的思考 - 如何评估质量

PingCAP

数据库 分布式 TiDB 产品质量

产品经理职责

执于业务

Linux网卡与公网IP地址:一个不可随意配置的世界🌐

GousterCloud

IP Linux Kenel

探索Linux的挂载操作🌈

GousterCloud

Linux Kenel 磁盘挂载

C语言关于&与&&运算符

百度搜索:蓝易云

云计算 Linux 运维 C语言 云服务器

深度剖析鞋服品牌商品数字化管理的重要性

第七在线

云PBX的内容介绍

ctsxiyou

通信 通讯 云通讯

WorkPlus Meet视频会议:打破时空障碍,助力企业安全高效协作

WorkPlus

Linux网卡IP地址配置错误的影响🐧🔧

GousterCloud

IP Linux Kenel

金融企业区域集中库的设计构想和测试验证

PingCAP

数据库 TiDB

程序员晚枫|2024年3月总结,人生中第一次「车祸」

程序员晚枫

程序员 总结 自媒体

Flink 文章

Joseph295

考古:IT架构演进之IOE架构

乐只

系统架构 基础架构 IOE架构

夯实智慧新能源数据底座,TiDB Serverless 在 Sandisolar+ 的应用实践

PingCAP

数据库 TiDB

vim替换命令 “:s“

百度搜索:蓝易云

vim 云计算 Linux 运维 云服务器

Tortoise Git(乌龟git)常用命令总结

百度搜索:蓝易云

git Linux 运维 云服务器 Tortoisegit

通过Golang获取公网IP地址

GousterCloud

#go 公网ip

开源软件更安全吗?

冯骐

深度思考 开源 架构 开发者 安全

TiDB 慢查询日志分析

PingCAP

数据库 日志分析 TiDB 慢查询

WorkPlus AI助理 | 提供企业AI私有化部署解决方案

WorkPlus

PIRF393

EchoZhou

English

“业务架构”

执于业务

Weblogic下启用Gzip压缩

百度搜索:蓝易云

Linux 运维 云服务器 weblogic gzip

WorkPlus:企业级私有化即时通讯软件

WorkPlus

在单交换机局域网中,不同网段的主机通信探秘🌐

GousterCloud

IP Linux Kenel

Doris 与 ClickHouse深度对比和选型建议

智慧源点

Clickhouse Doris

TiDB MVCC 版本堆积相关原理及排查手段

PingCAP

数据库 MVCC TiDB

为何一个网卡需要配置多个IP地址?🌐

GousterCloud

Linux Kenel 网卡 多网卡

Oracle drop删除表如何恢复

百度搜索:蓝易云

oracle 云计算 Linux 运维 云服务器

伯克利开源Ray Tune:大规模AI实验利器_开源_伯克利BAIR博客_InfoQ精选文章