AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

HBase 数据容灾技术方案

  • 2012-02-13
  • 本文字数:3535 字

    阅读完需:约 12 分钟

HBase 是一个分布式的、非关系型开源数据库。HBase 有如下几个特点:首先 HBase 是 No-SQL 的一个典型实现,提升了系统的可扩展性;其次 HBase 支持线性水平扩展,极大提升了系统的可伸缩性和运算能力;最后 HBase 和 Google 的 BigTable 有异曲同工之妙,底层也是建立在 HDFS(Hadoop 分布式文件系统) 之上,可以搭建在廉价的 PC 机集群上。No-SQL、云计算、海量数据分析的普及,使我们越来越关注系统的可靠性(High Availability),数据容灾 / 数据恢复是高可用系统的一个很重要的技术组成,本文由简入深,一步步搭建一个 HBase 数据集群,并详细说明生产环境如何使用 HBase 数据容灾方案。

HBase 架构简介

HBase 在完全分布式环境下,由 Master 进程负责管理 RegionServers 集群的负载均衡以及资源分配,ZooKeeper 负责集群元数据的维护并且监控集群的状态以防止单点故障,每个 RegionServer 会负责具体数据块的读写,HBase 所有的数据存储在 HDSF 系统上。

图一 HBase 逻辑架构 [1]

HBase 集群部署

HBase 集群物理架构

物理机

复制代码
192.168.0.105 Master Ubuntu Desktop 11.10 Desktop
192.168.0.102 Slave1 Ubuntu Desktop 11.10 Desktop
192.168.0.103 Slave2 Ubuntu Desktop 11.10 Desktop
192.168.0.104 Slave3 Ubuntu Desktop 11.10 Desktop
192.168.0.101 Recover Ubuntu Desktop 11.10 Desktop

图二 集群物理架构

先决条件

  1. SSH 协议 [2] Hadoop 集群之间的通讯采用的是 SSH 协议,所以要保证 Master、Slave 之间可以自由的通讯,一般推荐使用无验证通讯
  • 安装 SSH ```

    apt-get install openssh-server
    apt-get install openssh-client

复制代码
- 创建相同用户名的 SSH 公钥 在 master 主机和 slave 机上创建相同的用户 hadoop
复制代码
sudo adduser hadoop
复制代码
- 在主机上生成公私钥 key pair ```
ssh-keygen -t rsa -P ""
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys
  • 将 key 值复制到 slave1 和 slave2 上 ```

    scp $HOME/.ssh/id_rsa.pub hadoop@slave1:/home/hadoop/.ssh/authorized_keys
    scp $HOME/.ssh/id_rsa.pub hadoop@slave2:/home/hadoop/.ssh/authorized_keys
    scp $HOME/.ssh/id_rsa.pub hadoop@slave3:/home/hadoop/.ssh/authorized_keys

复制代码
这样 master 就可以自由的访问 slave 节点了
2. Java 安装 ```
sudo apt-get install sun-java6-jdk

Hadoop 部署

  1. Hadoop 配置 [3] 下载 Hadoop 0.20.2 版本 [4]
  • hadoop-env.sh ```

    export JAVA_HOME=/usr/lib/jvm/java-6-sun
    export HADOOP_HOME=/home/hadoop/hadoop-0.20.2

复制代码
- master,slaves ```
Master, Slave1, Slave2, Slave3
  • core-site.xml ```

    fs.default.name hdfs://master:9000 hadoop.tmp.dir // 临时文件目录 /data/tmp/hadoop // 注意不要放到 /tmp 目录下
复制代码
- hdfs-site.xml ```
<property>
<name>dfs.replication</name> // 备份文件
<value>1</value>
</property>
  • mapred.xml ```

    mapred.job.tracker master:9001
复制代码
2. 启动 Hadoop hadoop namenode format // 首先需要格式化 namenode

bin/start-all.sh

复制代码
验证服务:MapReduce 管理界面 http://master:50030/jobtracker.jsp
### **HBase 部署 **
1. HBase 配置 下载 HBase 0.90.50 版本 [\[5\]](#_Ref5)
- HBase-env.sh ```
export JAVA_HOME=/usr/lib/jvm/java-6-sun
export HBase_MANAGES_ZK=true //zookeeper 随 HBase 启动
  • HBase-site.xml ```

    HBase.rootdir hdfs://master:9000/HBase // 端口号和名称和 Hadoop 配置一致 HBase.cluster.distributed true dfs.replication 1 HBase.master master HBase.zookeeper.quorum slave1,slave2,slave3
复制代码
2. 启动 HBase 集群 Master 主机上执行 $HBase\_HOEM/bin/start-HBase.sh
{1}
验证:使用 jps 命令查看 HBase 的集群进程
{1}
![](https://static001.infoq.cn/resource/image/b6/f1/b6757f8dcc52737bba7abffab2bf2df1.jpg)
{1}
## HBase 数据容灾
{1}
前面我们已经介绍过,如果 HBase 单个节点出现故障,Zookeeper 会通知 master 主进程,master 会将 HLog 日志进行拆分,分发到其他 RegionServer 上进行数据恢复。HBase 对于单点故障的容错能力还是不错的,但是如果发生多点故障,现有的基本容错功能是远远不够的 (会造成数据丢失)。
{1}
### **HBase Replication 机制 [\[6\]](#_Ref6)**
{1}
HBase 0.90 以后开始支持 Replication 机制,该机制设计的主导思想是基于操作日志 (put/get/delete) 做数据同步,这点很像 MySQL 基于 Binary Log 做 statement-based replication[\[7\]](#_Ref7)。
{1}
如下图所示,客户端的 put/delete 操作会被 RegionServer 写入本地的 HLog 中去,与此同时每个 RegionServer 会将 Hlog 放入对应 znode 上的 Replication 队列,HBase 集群会有一个独立的线程,根据固定大小的 buffer 值,将 HLog 内容推送到 Slave Cluster 集群中的某个 RegionServer 上 (当前版本只支持单个 Slave Cluster 复制),并在将当前复制的偏移量保存在 ZooKeeper 上,整个过程是异步完成的。
{1}
![](https://static001.infoq.cn/resource/image/a3/13/a394ea8cb8cd2a50014e9cb27b724b13.jpg)
{1}
** 图三 HBase 数据同步 **[**\[8\]**](#_Ref8)
{1}
### **HBase Replication 启动 **
{1}
1. HBase-env.sh ```
export JAVA_HOME=/usr/lib/jvm/java-6-sun
export HBase_MANAGES_ZK=<strong>false</strong> //ZooKeeper 独立启动
  1. HBase-site.xml master 集群和 slave 集群的配置需要同时修改
复制代码
<property>
<name>HBase.replication</name>
<value>true</value>
</property>
  1. Shell 启动复制功能
复制代码
add_peer disable 'my_table_name'  // 表名字
alter ' my_table_name ', {NAME => 'family_name', <strong>REPLICATION_SCOPE => '1'</strong>// 修改表 schema
enable ' my_table_name' 

验证:查看 RegionServer 的日志

复制代码
Considering 1 rs, with ratio 0.1
Getting 1 rs from peer cluster # 1
Choosing peer 192.168.0.101:62020

数据校验

为了保证数据一致性,生产环境上做异地容灾需要增加数据校验 / 数据监控。HBase 的 Replication 机制,根据官方的文档提供了数据比对的工具类 VerifyReplication [9] 。我们可以将其功能包装起来,做自动化校验。下面是代码片段:

复制代码
final String[] argumentsArray = new String[] {
"--starttime=xxxxxxxxxxx", // 开始时间戳根据具体的业务需要
"--stoptime=" + new Date().getTime(), // 选取当前时间戳作为结束的时间戳
"1", //peer node id
"my_table_name" // 表名
};
final Timer timer = new Timer();
timer.schedule(new TimerTask() {@Override
public void run() {
try {
Configuration conf = HBaseConfiguration.create();
Job job = VerifyReplication.createSubmittableJob(conf, argumentsArray);
job.waitForCompletion(true);
long value = job.getCounters().findCounter(VerifyReplication.Verifier.Counters.BADROWS).getValue();
if (value > 0) {
Logger.getLogger("Finding Unmatched Rows! " + value);
}
} catch (Exception e) {
// 异常处理策略
final String msg = "Comparing Job Error!";
Logger.getLogger(this.getClass()).error(msg, e);
try {
SMTPClientWrapper.send("xxx@xxx.com", "HBase replication error!", msg);
} catch (Exception e1) {
// 考虑邮件服务器 down 机, failover
Logger.getLogger(this.getClass()).error("send alarm email error!", e);
}
}
}
}, 0, 600000); // 十分钟校验一次

小结与展望

HBase 的 Replication 机制,为增强系统可靠性提供了有力支持,但目前单节点 Slave Cluster 复制会增加系统的负荷并间接形成 Slave Cluster 的数据热点,期待 HBase 后续的版本支持多节点 Slave Clusters 复制。

引用

[1] http://ofps.oreilly.com/titles/9781449396107/intro.html

[2] http://en.wikipedia.org/wiki/Secure_Shell

[3] http://hadoop.apache.org/common/docs/current/cluster_setup.html

[4] http://hadoop.apache.org/common/releases.html#Download

[5] http://www.apache.org/dyn/closer.cgi/HBase/

[6] http://HBase.apache.org/replication.html

[7] http://dev.mysql.com/doc/refman/5.1/en/replication-formats.html

[8] http://HBase.apache.org/replication.html

[9] http://HBase.apache.org/xref/org/apache/hadoop/HBase/mapreduce/replication/VerifyReplication.html


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2012-02-13 00:009259

评论

发布
暂无评论
发现更多内容

java高级用法之:JNA中的Memory和Pointer

程序那些事

Java Netty 程序那些事 4月月更

直播预告 | PolarDB-X 动手实践系列——用 PolarDB-X 搭建一个高可用系统

阿里云数据库开源

MySQL 数据库 阿里云 开源 PolarDB-X

如何使用 Serverless Devs 部署静态网站到函数计算

阿里巴巴云原生

PlatoFarm生态NFT总量恒定,激励机制让Dao成员持续贡献

西柚子

EventBridge 与 FC 一站式深度集成解析

阿里巴巴云原生

后端开发【一大波干货知识】网络通信模型和网络IO管理

Linux服务器开发

后端开发 Linux服务器开发 C++后台开发 网络io 网络通信

Java运算符、输入、选择流程控制详细讲解

五分钟学大数据

Java 4月月更

PlatoFarm生态NFT总量恒定,激励机制让Dao成员持续贡献

小哈区块

开个自助洗车要多少钱?主要费用有哪些?

共享电单车厂家

自助洗车加盟 开个自助洗车

优秀的FAQ示例及FAQ页面制作技巧

小炮

FAQ

云原生边缘计算KubeEdge在智慧停车中的实践

华为云原生团队

边缘计算 边缘技术 边缘云

基于数据技术全域流量协同优化是银行零售业务关键突破点

易观分析

银行 数据技术

TASKCTL的单机与分布式部署,如何启动服务和代理节点监听

敏捷调度TASKCTL

批量任务 调度引擎 ETL 自动化运维 调度任务

这些大咖想和你聊聊什么是行业期待的多模态学习

小红书技术REDtech

算法 多模态

ironSource Luna 正式推出针对苹果搜索广告的自动化投放工具

Geek_2d6073

iOS编码规范

刁架构

规范 iOS编码规范

移动数字化平台原来可以这样帮企业打造协同生态链!

WorkPlus

K8s 基于 EFK 的日志解决方案介绍

移动云大数据

elasticsearch Kibana Fluentd

加盟自助洗车需要人工全天看守吗

共享电单车厂家

24小时无人自助洗车 加盟自助洗车

知名数字化解决方案厂商新华三加入龙蜥社区,已完成硬件兼容性测试

OpenAnolis小助手

开源社区 兼容性测试 龙蜥社区 CLA 新华三

元宇宙背景下——内容生产传播商业价值分析2022

易观分析

元宇宙 内容生产传播

快速了解日志概貌,详细解读13种日志模式解析算法

云智慧AIOps社区

算法 运维 安全 监控 日志

关于 RocketMQ Summit 的延期通知

阿里巴巴云原生

独家下载!突破开源Redis,华为云十年自研内核修炼之路《企业级Redis技术与应用解读》重磅发布丨云享·书库

华为云开发者联盟

redis 华为云 GaussDB(for Redis) 开源Redis 企业级Redis

解决混合云数据库一站式备份若干问题 腾讯云数据库DBS正式上线

科技热闻

构建测试的体系化思维(高级篇)

BY林子

质量赋能 测试体系

花14天梳理了3月份各大厂问得最多的50道Java基础面试题

北游学Java

Java 面试

如何通过 Node 上传小程序代码,不会就看看吧

CRMEB

走进直播间——智能自动化助力政企数字化转型

云计算

阿里巴巴云原生混部系统 Koordinator 正式开源

阿里巴巴云原生

腾讯WeTest通过TMMi 3级认证

WeTest

HBase数据容灾技术方案_DevOps & 平台工程_李湃_InfoQ精选文章