写点什么

Sharethrough 使用 Spark Streaming 优化实时竞价

  • 2014-04-17
  • 本文字数:2116 字

    阅读完需:约 7 分钟

来自于 Sharethrough 的数据基础设施工程师 Russell Cardullo 和 Michael Ruggiero 最近在 Cloudera 博客上投递了一篇博文,分享了他们是如何使用 Spark Streaming 解决复杂的实时问题的。下面是博文的具体内容,如果您想查看英文原文,可以点击这里

Sharethrough 是一家从事视频广告业务的初创公司,在过去的三年中(从 Amazon EMR 上迁移出来之后)我们一直运行在 CDH 上面,主要是为了 ETL。随着 2013 年早期交易平台的启动以及对优化实时内容分发的需要,我们需要做出一些改变,但是 CDH 依然是我们基础设施中的一个重要部分。

在 2013 年年中,我们开始尝试使用基于流的方式访问管道中的点击流数据。我们问自己:我们是否能够给自己的开发人员一个针对增量、小批处理任务做过优化的编程模型和框架并继续依赖于 Cloudera 平台,而不是通过更频繁地运行那些更大的批处理任务“加热我们的冷路径”?在理想的情况下,我们的工程师团队关注于数据本身,而不是担心具体细节,例如管道间的状态一致性或者故障恢复。

Spark(和 Spark Streaming)

Apache Spark 是一个快速通用的大数据处理框架,它的编程模型比较适合于构建那些对常规的 MapReduce 而言太过于复杂或者不太可行的应用程序。Cloudera Enterprise 5 已经包含了 Spark,并且已经支持 CDH 4.4 及更新版本。借助于对内存持久化存储的抽象,Spark 支持所有的 MapReduce 功能,但是它执行地更快,因为它不需要进行数据复制、磁盘 I/O 和序列化。

因为 Spark Streaming 与 Spark 批处理和交互模式共享同样的 API,所以我们现在可以使用 Spark Streaming 实时聚合关键的业务数据。一致的 API 意味着我们能够使用较为简单的批处理模式进行本地的开发和测试,同时又能让这些工作无缝地在产品环境中运行。例如,我们现在可以使用与某个活动相关的所有数据集优化实时竞价,不需要等运行频率较低的 ETL 流完成。此外,我们还能执行实时实验并衡量结果。

使用 Spark 之前和之后

之前,我们的批处理系统是这样的:

  1. Apache Flume 基于最优的 HDFS 块大小(64MB)将文件写入到每小时的桶中
  2. 每天定时执行 MapReduce (Scalding) 任务 N 次
  3. Apache Sqoop 将结果移入数据仓库
  4. 延迟是~1 小时之后,加上 Hadoop 的处理时间

Sharethrough**** 之前的批处理数据流

对我们这个特定用例,尽管那些运算结果依然是有价值的,但是这个批处理流程却无法让我们实时访问绩效数据。例如,一个小时之后我们才能知道用户每天的预算是否花完,这意味着我们的广告商要花一些冤枉钱,我们的内容商无法填满自己的需求。即使是在批处理任务只会花费几分钟的时候,流量峰值也可能会减慢给定的批处理任务,导致它“撞”到新启动的任务。

对于这些用例,流式数据处理是可行的解决方案。

  1. Flume 将点击流数据写入 HDFS
  2. Spark 每 5 秒钟从 HDFS 上读取数据
  3. 输出到一个键—值存储并更新预测模型

Sharethrough 新的基于 Spark Streaming 的数据流

在新模型中,我们的延迟时间仅仅是 Spark 的处理时间和 Flume 将文件传输到 HDFS 上的时间;在实际情况下,这个工作大约会花费 5 秒钟。

在路上

在开始使用 Spark Streaming 的时候,我们开始的非常快,遇到的麻烦很少。为了更好地利用新的 Streaming 任务,我们很快就调整成了 Spark 编程模型。

下面是我们在这个过程中发现的一些事情:

  • 24 x 7 流式应用的结构和按小时的批处理任务是不同的——你可能需要细粒度的警报,并对重复的错误更有耐心。对于流式应用你需要良好的异常处理。准备好回答这样的问题:“如果 Spark 接收端不可用怎么办?应用程序是否应该重试?是否应该忽略丢失的数据?是否应该给你报警?”
  • 花时间验证输入对应的输出。例如,验证一个记录点击数的任务在测试时是否会返回符合你期望的结果。
  • 确认支持的对象被序列化。Scala DSL 让我们能够容易地封装非可序列化的变量或者引用。在我们的场景中,GeoCoder 对象并没有被序列化,导致我们的应用运行的非常慢;它必须返回到原来的驱动程序,非分布式对象。
  • Spark Streaming 任务的输出仅和喂养 Spark 的队列一样可靠。如果生产队列落下了 1% 的消息,那么你可能需要一个定期调整策略,例如将有损耗的“热路径”和“冷路径”持久数据进行合并。对于这种类型的合并,当你确实需要精确可靠的关联计算时(例如计数)monoid 抽象可能是有帮助的。如果你想了解更多与此相关的信息,可以查看可合并的存储,例如 Twitter 的 Storehaus 或者 Oscar Boykin 的 Algebra for Analytics

结论

Sharethrough 的工程师打算使用 Spark Streaming 做更多的事情。我们的工程师可以交互式地制作一个应用程序,测试它的批处理,然后将它转移到 Streaming 上并让它正常运行。我们鼓励其他对实时处理感兴趣的人看看 Spark Streaming。由于简洁的 Spark API,熟悉 MapReduce 的工程师现在不需要学习全新的编程模型就能构建 Streaming 应用程序。

Spark Streaming 让你的组织能够攫取那些只能从分钟级的数据中获取的价值,或者以机器学习算法的形式,或者是实时仪表盘:完全取决于你!


感谢辛湜对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-04-17 19:083230
用户头像

发布了 321 篇内容, 共 124.5 次阅读, 收获喜欢 19 次。

关注

评论

发布
暂无评论
发现更多内容

程序员都惧怕的故障域

松花皮蛋me

Java 问题处理

centos7分区命令parted的用法(大于2T)

唯爱

初识 LeetCode

Puran

LeetCode arts

工作的创新能力

punkboy

产品 重新理解创业 产品经理 创新突破 创新

【大厂面试02期】Redis过期key是怎么样清理的?

NotFound9

Java 数据库 redis 架构 后端

Java 走过的创新25年

田晓旭

Java25周年

同一浏览器只允许登录一个账号

码字与律动

Vue 大前端

LeetCode | 1. Two Sum 两数之和

Puran

Python C# 算法 LeetCode arts

坚持ARTS-week2

王钰淇

ARTS 打卡计划

Java 最新的JDK14.0.1调试成功

程李文华

微信小程序开发 | 如何在小程序中使用自定义 icon 图标

彭宏豪95

微信小程序 学习 编程 大前端 IT

重学 Java 设计模式:实战适配器模式

小傅哥

设计模式 小傅哥 重构 代码质量 代码坏味道

【Sentry搭建之 docker-compose】

卓丁

DevOps Docker-compose CI/CD sentry

分布式事务 - 理论模型

Java收录阁

分布式事务

带你学够浪:Go语言基础系列 - 8分钟学控制流语句

程序员柠檬

后台开发 Go 语言

游戏夜读 | 如何管理公司?

game1night

程序员的晚餐 | 6 月 2 日 红烧鸡爪的味道

清远

美食

谈谈控制感(13):为什么是旁观者清?

史方远

读书笔记 个人成长 心理学 随笔杂谈

洞悉MySQL底层架构:游走在缓冲与磁盘之间

帅旋

MySQL 数据库 MVCC

有的线程它死了,于是它变成一道面试题。

why技术

源码分析 面试 jdk源码 线程池

LeetCode | 2. Reverse Integer 整数反转

Puran

Python C# 算法 LeetCode arts

路漫漫其修远兮

无心水

什么时候去面试

escray

【译】5 个你需要知道的 JavaScript 小技巧

零和幺

Java 大前端 技巧

SpringBatch系列入门之Tasklet

稻草鸟人

spring SpringBatch 批处理

【vue-openlayers】弹窗

德育处主任

html Vue 大前端 openlayers ol

深入理解JVM内存管理 - 堆和栈

Skye

堆栈 深入理解JVM VM参数

ARTS 01 - 技术人的理想主义

jerry.mei

算法 Vue 练习 ARTS 打卡计划 ARTS活动

架构演变之路:为何要搞微服务架构?

帅旋

Kubernetes 微服务 dubbo SpringCloud

ARTS打卡week#1

对方正在输入…

ARTS 打卡计划

一文入门JVM虚拟机

Simon郎

深入理解JVM

Sharethrough使用Spark Streaming优化实时竞价_语言 & 开发_孙镜涛_InfoQ精选文章