写点什么

新思路设计可视化大型微服务监控系统

  • 2018-01-10
  • 本文字数:3724 字

    阅读完需:约 12 分钟

背景

随着微服务在生产实践中被大量使用,后台系统中的服务系统数量暴增,挑战也随之产生。当系统出现问题时,如何在上百个相关的、依赖错综复杂的服务系统之中快速定位到出错的系统?

达达 - 京东到家的 Overwatch 系统已经在线上运行了一年有余,采用了创新性的可视化监控设计,并成功帮助达达 - 京东到家的系统渡过了“双十一”的挑战,设计思想值得分享。

“双十一”期间,系统承载了京东商城每天几百万单的压力,“双十一”当天单量即突破 600 万单,第二天的单量更是超过了 800 万单。对于大型微服务系统来说,任何一个服务系统出现问题,都可能导致大面积的系统故障。当配送员在配送过程中操作 APP 然后发现操作失败时,究竟是订单系统出现了问题?还是用户系统出现了问题?还是某个第三方服务出现了问题?导致这些问题的是数据库的慢查询?还是系统本身的 GC?又或者仅仅是一次网络波动?

在没有 Overwatch 之前,每当线上系统出现报警,我们的工程师都要登上相应系统的某台机器查看日志。然而这样的工作收效甚微,因为可能出现问题的原因真的有很多:

  • 该系统响应失败是因为调用其他系统失败,报出错误的系统本身并没有问题。
  • 调用其他系统失败是由于网络问题,请求并没有到达目标系统,所以在目标系统的日志中看不到任何异常。
  • 被调用的系统响应超时,导致调用方主动断开连接,在被调用方的日志中只能看到连接意外中止的异常信息。
  • 调用其他系统存在一条很长的调用链,无法快速追踪到源头。

为了达到京东商城对配送时效的高标准,我们必须快速响应、定位并解决系统故障。通过 Overwatch 系统,我们便可以做到这一点。

Overwatch 监控系统

简介

Overwatch 是一个远程调用监控系统,通过对系统调用外部系统的监控,并以可视化图形的方式展现,实现对大型微服务系统可用性的监控。

Overwatch 能够实时监控系统中所有的 RPC(广义上的 RPC),及时发现所有 RPC 调用失败情况。通过一个有向图进行数据展现,让工程师可以在多个系统同时异常时快速定位到异常的根源。

Figure 1 Overwatch 主界面截图

数据采集

为了能够发现 RPC 调用失败的所有情况(包括业务问题、系统问题、网络问题),我们讨论如下两种监控方案:

1、从服务提供方监控

对服务提供方应用容器的访问日志(如 Tomcat 的 access.log)进行监控,将所有应用的这些日志文件通过公司现有的日志收集 - 分析系统进行统一收集分析。这样的方案可以快速实施且无需修改现有代码,开发量也较少。

Figure 2 日志收集 - 分析架构图

然而这样做的问题也很明显:

  • 无法监控到网络问题,因为请求会由于网络原因没有到达服务提供方(Connect Timeout)。
  • 请求响应超时(Read Timeout),这样的请求不会展现在访问日志中(一些版本的 Tomcat 存在该问题,包括我们正在使用的版本)。
  • 无法监控到异常的响应请求,即虽然返回了 HTTP 200 状态码,但是实际上是请求失败(如返回 JSON 字符串{“status”: “failed”})。

我们不能从服务提供方进行“主观”的监控。服务是给服务消费方使用的,服务提供方所认为的“正确”是不够“客观”的,只有服务消费方认为请求成功,才是“客观”的请求成功。

2、从服务消费方监控

从服务消费方可以实现上述“客观”的监控。

Figure 3 从服务消费方监控

但是我们需要自己实现信息的收集和聚合,同时我们需要一个在服务进程中的 Agent 去收集 RPC 信息。我们采用了 Kafka 进行数据的收集,Storm 进行数据的聚合,最后将数据交给 Overwatch 服务进程进行存储和展现。这样我们可以做到一个延迟在秒级的实时监控系统。

数据展现

至此,我们还需要解决一个问题:如何能够在多个系统同时异常时,快速定位到异常的根源。传统的监控多以柱状图、折线图的形式展现信息。

Figure 4 传统监控图表

这样的信息展现显然不能满足我们的需求,Overwatch 在信息的展现方式上需要作出改变,我们采用了有向图的方式展现监控数据。有向图展现 RPC 监控数据有如下优点:

  • 可以在一张图表中完整展现所有系统的状态。
  • 由于 RPC 是有向的(从消费方向提供方),使用有向图可以完美表达出该信息。
  • 图可以表达系统之间的依赖关系,当多个系统同时异常时,可以通过观察图中的依赖关系来找到异常的根源。

Figure 5 有向图概念示意图

使用有向图也存在一些问题:传统图表可以展现“监控统计值 - 时间”这样的二维关系,而在有向图中展现这些数据并没有那么简单,我们在之后的章节讨论中会讨论展现的方法。

在 Overwatch 中,我们会展现系统最近一分钟、最近 5 分钟平均、最近 15 分钟平均的统计值(类似于 Linux 中的 uptime 所展示的信息)。要展现这些数据,Overwatch 必须取最近 15 分钟的所有监控数据,并进行相应的聚合计算,这是开销特别大的操作,显然不可能对于每次用户的查看监控请求都进行一次这样的操作。对于这部分的实现,我们采用了 CQRS 的模式。

CQRS(Command Query Responsibility Segregation)是指对于数据的修改、更新操作(Command)和读取(Query)操作分别使用不同的 Model。这对于普通的 CRUD 业务需求来说只会增加系统复杂度,但是在 Overwatch 这样复杂查询、简单写入的场景下,是一种非常合适的模式。

由于 Overwatch 的服务端由 Node.js 实现,所以可以完美实现一个事件驱动的、从服务器到浏览器的 CQRS 架构。架构设计如下:

Figure 6 CQRS 模式架构图

显示器的第三个维度

上文提到了有向图的问题,即难以展现一个时间轴。显示器都是二维的,传统的柱状图用一维表示统计值,另一维表示时间,二者形成的坐标点和二维显示器上的点对应。而有向图需要展现一个“方向”,节点需要在一个平面内展现,所以显示器上的两个维度已经被用完了。为了展示时间维度的信息,我们采用了显示器的第三个维度——颜色。

我们使用三个同心圆表示一个节点,每个圆的颜色根据该系统所有 RPC 调用的成功率从蓝(100%)到黄(<99.9%)到红(<99%)。最内侧的圆表示最近一分钟的成功率;中间的圆表示最近 5 分钟的成功率;最外侧的圆表示最近 15 分钟的成功率。通过这三个同心圆,我们就可以直观了解到该系统当前的状态以及最近 15 分钟的变化。

Figure 7 数据节点三色环示意图

除此之外我们使用节点的大小表示节点最近一分钟的访问量,用边的颜色表示两个系统之间的 RPC 调用的成功率。

当多个系统同时异常时,通过系统间的依赖关系,我们可以迅速找到异常的根源,也可以评估异常的影响范围。

在大促期间,一旦 APP 接口开始报警,我们仅需打开 Overwatch 监控页面,查看有向图中的异常信息。

Figure 8 异常定位

根据上图的异常信息(非真实数据),我们可以立刻得知是订单系统在调用用户系统时出现了异常,且异常为 ReadTimeout,那么用户系统就是问题的根源。接下去,我们就可以通过应用日志分析、系统硬件监控等工具对这个系统的异常进行分析以及排查。

优势:直接

与传统的调用链监控系统,即 Google Dapper 的各种实现系统如淘宝的 EagleEye、Twitter 的 Zipkin,或者 APM(Application Performance Management,应用性能管理)工具如 Pinpoint 相比,Overwatch 的设计思想更加“直接”。

使用调用链监控系统来进行问题排查,工程师首先需要定位到一个异常的请求,然后需要在一条调用链中查找异常,这是非常耗时且繁琐的工作。

Figure 9 传统调用链监控系统

传统的调用链监控系统是从“请求”的维度进行监控数据的收集和展现,将一个“请求”的完整链路展现出来。这样的监控系统更适合用来作为细致的性能分析和优化工具,并不适合作为一个快速定位异常的工具使用。

而 Overwatch 是从系统的维度进行监控数据的收集和展现,并不关心一个请求的完整链路。Overwatch 可以在一张监控图中完成系统异常的发现和定位,通过有向图的展示,工程师不需要做任何数据分析,仅凭“感觉”便可确定异常位置。

系统展示

Figure 10 节点信息,包括 5 分钟、10 分钟、15 分钟统计

Figure 11 单系统信息快速展示,包括最近一小时统计图表以及错误日志

Figure 12 单系统历史信息查询

Figure 13 有向图布局设置

未来展望

Overwatch 是一个相对年轻的系统,是一次对大型微服务系统可视化监控现的尝试。同时,我们也在不断优化、加强 Overwatch 的功能。Overwatch 有着极大的扩展潜力,我们正在努力实现以下功能:

  • 对于数据源、中间件的监控(如 MySQL、Redis、消息队列),在有向图中加入基础组件,全面监控所有系统间的依赖以及调用情况。
  • 支持更多 RPC 协议 (如 Thrift、gRPC)。
  • 更多的 metric,实现精确到 API 的监控和展现。
  • 使用智能算法自动发现异常(如系统访问量突变)。
  • 更多的展现方式(如形状、动画)。

我们也对 Overwatch 进行了开源, 目前仅对监控数据的展现部分进行了开源,数据收集以及分析部分由于依赖多种内部基础设施,暂时没有开源。接下去的开源计划:

  • 各语言的监控数据收集 Agent(Java、Python 等)
  • 各协议、中间件的监控 Agent
  • 监控数据收集 Agent 的无感知接入
  • 监控数据的多样化存储(支持 OpenTSDB 等)

欢迎各位感兴趣的同学加入 Overwatch 的开源工作。

地址:

https://github.com/imdada/overwatch

作者介绍

张玄,达达 - 京东到家基础架构研发工程师,毕业于南京大学,高中参与上海计算机竞赛,荣获第一名。毕业后就职于达达 - 京东到家基础架构团队,从事基础组件、系统监控等开发工作。

感谢雨多田光对本文的审校。

2018-01-10 17:017358

评论

发布
暂无评论
发现更多内容

博睿数据受邀亮相NebulaGraph Meetup北京站

博睿数据

巧用时间换空间:解读 ArcGraph 如何灵活应对有限内存下的图分析

Fabarta

图数据库 图计算 图分析 #人工智能

【免费大屏】JimuReport 积木仪表盘 v1.8.1 首个集成版本发布

JEECG低代码

从零开始学机器学习——了解回归

不在线第一只蜗牛

机器学习

2024具身智能大会 | 网易伏羲负责人范长杰博士:群体智能引领AI通向物理世界

网易伏羲

人工智能 aop 网易伏羲 具身智能 群体智能

百度搜索结果波动的极致治理

百度Geek说

《春江花月夜》Vivid菁彩视听版,开启一场美学视听盛宴!

最新动态

【程序大侠传】应用内存缓步攀升,告警如影随形

Disaster

第三期安全AI挑战者计划-文本分类对抗攻击 第三名“我永远喜欢星野源”技术总结

阿里云天池

MLPerf 放榜,中国 AI 存储公司焱融科技斩获多项世界第一

焱融科技

AI 高性能存储 MLPerf

DeFi强势回归:新一轮DeFi牛市即将到来?

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 NFT开发 公链开发

从API到数据:京东商品详情一键获取的奥秘

技术冰糖葫芦

API Gateway API 接口 API 测试 pinduoduo API

仅需6步,实现虚拟物体在现实世界的精准放置

HarmonyOS SDK

HarmonyOS

华为智慧屏 V5 Max 110发布!Audio & HDR Vivid畅享菁彩视听盛宴

最新动态

获取淘宝商品详情数据api接口GET请求访问权限的条件

代码忍者

API 接口 pinduoduo API

Footprint Analytics 集成 Sui 区块链数据:助力 Move 生态系统的未来

Footprint Analytics

blockchain Sui

程序员如何构建自己的话语体系?——用当量

思码逸研发效能

编程 程序员 软件开发 代码 绩效考核

精通Java并发锁机制:24种锁技巧+业务锁匹配方案(第二部分)

肖哥弹架构

Java 高并发

mac苹果电脑虚拟机推荐:VMware Fusion Pro for Mac 下载

你的猪会飞吗

VMware Fusion Pro VMware Fusion Pro 13 mac VMware Fusion Pro 12

域管理员账号被锁定解决办法

ServiceDesk_Plus

AD域 域管理

C2C交易系统开发DApp组成架构详解

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 公链开发 代币开发

使用豆包MarsCode 实现高可用扫描工具

TRAE

人工智能 程序员 AI 开发 智能化

浅析数字孪生与数字卫星发展史

DevOps和数字孪生

卫星

人工智能 | 手工测试用例转Web自动化测试生成

测试人

软件测试 软件测试面试

CNCC | 从游戏AI到AOP :虚实融合助推新质生产力

网易伏羲

人工智能 aop 网易伏羲 游戏AI cncc

这个软件开发工具私活必备,后端程序员也能一键搞定各端APP、小程序

Onegun

finclip

助力降本增效,ByteHouse打造新一代云原生数据仓库

字节跳动数据平台

数据仓库 云原生 OLAP 降本增效

探索MySQL中VARCHAR(255)的演变及其对数据库设计的影响

Steven

合同管理中的常见陷阱,你是否也中招了?

天津汇柏科技有限公司

低代码 合同管理 AI 人工智能

新思路设计可视化大型微服务监控系统_架构_张玄_InfoQ精选文章