写点什么

使用 Kubernetes 和 TensorFlow Serving 将神经网络镜像分类进行弹性扩容

  • 2020-03-12
  • 本文字数:5321 字

    阅读完需:约 17 分钟

使用Kubernetes和TensorFlow Serving将神经网络镜像分类进行弹性扩容

Google 近日 3 月 23-24 日在美国旧金山举办首次谷歌云平台(Google Cloud Platform) GCP NEXT 大会,参会人数超过 2000 人。GCP NEXT 大会以机器学习、资料中心和云端安全为主要议题,为未来 GCP 发展做战略规划。

其中,关于机器学习,谷歌发布了云端机器学习平台(Cloud Machine Learning),为开发者和企业用户提供一整套包含视听及翻译的应用 API,例如 Cloud Translate API 和 Cloud Vision API。除了 machine learning,谷歌去年就推出了机器学习开放原始码平台 TensorFlow,鼓励开发者利用该平台来开发创新应用服务。现在 TensorFlow 和 Kubernetes 相结合,将建立更为强大的机器学习模型,扩充功能,开启人工智能机器学习在谷歌云端的新纪元。


在 2011 年,谷歌开发了一个内部深度学习基础设施叫做“DistBelief”,这个设施允许谷歌人创建更大的神经网络和扩容实训成千上万个核心。最近几年,谷歌引进了 TensorFlow,也就是它的二代机器学习系统。TensorFlow 的特点是通用,灵活的,便携的,易于使用,最重要的是,它是使用开源社区开发的。



将机器学习引入到你的产品的过程包括创建和训练数据集模型。引入机器学习到你的产品这个过程涉及到创建和训练模型在你的数据集上,然后 push 模型到生产过程来提供请求。在这篇博客中,我们将会展示给你们如何通过 TensorFlow 使用 Kubernetes,TensorFlow 是一个高性能,满足应用程序的扩展需求,为机器学习模型提供开源服务系统。


现在让我们以镜像作为例子。假设你的应用程序需要能够在一系列类别中正确的识别一个镜像。比如,给出下面这个可爱的小狗图,你的系统应该将它归类到猎犬这一类。



你可以通过 TensorFlow 使用从 ImageNet 数据集上面 trained 的 Inception-v3 模型,来实现图像分类。这个数据集包含图片和标签,允许 TensorFlow 学习者 train 一个模型,该模型可以被用在生产过程中。



一旦模型被训练和输出,TensorFlow 服务使用该模型来进行推理——基于客户提供的新数据的预言。在我们的例子中,客户在 gRPC 请求提交镜像分类,gRPC 是一个来自谷歌的高性能,开源 RPC 的框架。



推理可以是十分资源密集型的。我们的服务器执行以下 TensorFlow 来处理它接收到的每一个分类的要求。Inception-v3 模型有超过 2700 万个参数,每次运算推理(inference)运行 57 亿浮点。



幸运地,这就是 Kubernetes 可以帮助到我们的地方。Kubernetes 分布推断请求处理跨集群使用外部负载均衡器。集群中的每个 pod 都包含一个 TensorFlow 服务于 Docker 镜像,还有 TensorFlow 服务为基础的 gRPC 服务器,以及一个 trained 的 Inception-v3 模型。这个模型以文件集描述 TensorFlow 图的形式呈现,模型权重,资产等等。既然所有东西都是整齐的打包好放到一起,那么我们就可以使用 Kubernetes Replication Controller 动态的扩展复制 pods,以此来跟上服务要求。


为了帮助你自己试一试,我们写了一个 tutorial 教程,它展示了如何创建 TensorFlow 服务 Docker 容器来给 Inception-v3 镜像分类模型提供服务,安装 Kubernetes 集群,并且应对该集群运行分类请求。我们希望这个教程能够让你更加容易地去整合机器学习到你自己的程序上,以及用 Kubernetes 扩大规模。学习更多关于 TensorFlow,请看下文补充:

用 TensorFlow Serving 和 Kubernetes 给 Inception 模型提供服务

这个 tutorial 展示了如何使用 TensorFlow Serving 组件在容器里面的运用,以此来服务 TensorFlow 模型,还展示了如何用 Kubernetes 配置服务中的集群。


为了解更多关于 TensorFlow 服务的信息,我们推荐《TensorFlow 服务初级教程》和《TensorFlow 服务教程》。


为了解更多关于 TensorFlow Inception 模型,我们推荐《Inception in TensorFlow》。


Part0 展示的是怎样为配置创建一个 TensorFlow 服务 Docker


Part1 展示的是如何在本地容器运行镜像


Part2 展示了如何在 kubernetes 上配置

Part0: 创建一个 Docker 镜像

请参考《通过 Docker 使用 TensorFlow 服务》来了解创建过程中的更多细节。

运行容器

我们使用 Dockerfile.devel 来创建一个基底镜像 $USER/tensorflow-serving-devel,然后使用创建好的镜像来启动本地容器。


USER/tensorflow-serving-devel -f tensorflow_serving/tools/docker/Dockerfile.devel .USER/tensorflow-serving-devel

在容器中克隆,配置以及创建 TensorFlow 服务

在运行的容器中,我们克隆,配置以及创建 TensorFlow 服务。然后测试运行 [inception_inference]。(网址:https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/inception_inference.cc)


root@c97d8e820ced:/# git clone --recurse-submodules https://github.com/tensorflow/servingroot@c97d8e820ced:/# cd serving/tensorflowroot@c97d8e820ced:/serving/tensorflow# ./configureroot@c97d8e820ced:/serving# cd ..root@c97d8e820ced:/serving# bazel build -c opt tensorflow_serving/...root@c97d8e820ced:/serving# lsAUTHORS          LICENSE    RELEASE.md  bazel-bin       bazel-out      bazel-testlogs  tensorflow          zlib.BUILDCONTRIBUTING.md  README.md  WORKSPACE   bazel-genfiles  bazel-serving  grpc            tensorflow_servingroot@c97d8e820ced:/serving# bazel-bin/tensorflow_serving/example/inception_inferenceE tensorflow_serving/example/inception_inference.cc:362] Usage: inception_inference --port=9000 /path/to/exports
复制代码

容器中的输出 Inception

在容器中,我们运行inception_export.py使用发布的Inception model training checkpoint来出口 inception 模型。


我们使用训练有素的现成的动态检查点来恢复直接推理,并且直接输出它。


root@c97d8e820ced:/serving# curl -O http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gzroot@c97d8e820ced:/serving# tar xzf inception-v3-2016-03-01.tar.gzroot@c97d8e820ced:/serving# ls inception-v3README.txt  checkpoint  model.ckpt-157585root@c97d8e820ced:/serving# bazel-bin/tensorflow_serving/example/inception_export --checkpoint_dir=inception-v3 --export_dir=inception-exportSuccessfully loaded model from inception-v3/model.ckpt-157585 at step=157585.Successfully exported model to inception-exportroot@c97d8e820ced:/serving# ls inception-export00157585root@c97d8e820ced:/serving# [Ctrl-p] + [Ctrl-q]
复制代码

提交镜像到配置

注意我们从上述指令的容器中分离出来而不是终止它,因为我们想要为 Kubernetes 配置提交所有的修改到新的镜像 $USER/inception_serving。


$ docker commit inception_container $USER/inception_serving$ docker stop inception_container
复制代码

Part1:在本地 Docker 容器运行

让我们在本地用创建的镜像测试一下服务流程。


USER/inception_serving

开启服务器

在容器中运行 gRPC 服务器


root@f07eec53fd95:/# cd servingroot@f07eec53fd95:/serving# bazel-bin/tensorflow_serving/example/inception_inference --port=9000 inception-export &> inception_log &[1] 45
复制代码

查询服务器

用 inception_client.py.(https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/inception_client.py)。客户端通过gRPC用一个命令行参数发送一个指定的镜像到服务器。然后查找ImageNet同义词集合和元数据文件,并且返回到人类可读的分类。


root@f07eec53fd95:/serving# bazel-bin/tensorflow_serving/example/inception_client --server=localhost:9000 --image=/path/to/my_cat_image.jpg8.976576 : tabby, tabby cat8.725506 : Egyptian cat6.883981 : tiger cat2.659257 : lynx, catamount2.028728 : window screenroot@f07eec53fd95:/serving# exit
复制代码


它运行起来了!服务器成功地分类了你的 cat 镜像!

Part2:在 kubernetes 上配置

在这一节里,我们使用 Part0 中创建的容器镜像来配置一个服务集群,用的是 Google Cloud Platform 中的 Kubernetes。

GCloud 项目登录

这里我们假设你已经创建并且已经登陆了名“ tensorflow-serving”gcloud 项目。


$ gcloud auth login --project tensorflow-serving
复制代码

创建一个容器集群

首先,我们为服务配置创建一个 Google Container Engine 集群。


$ gcloud container clusters create inception-serving-cluster --num-nodes 5Creating cluster inception-serving-cluster...done.Created [https://container.googleapis.com/v1/projects/tensorflow-serving/zones/us-central1-f/clusters/inception-serving-cluster].kubeconfig entry generated for inception-serving-cluster.NAME                       ZONE           MASTER_VERSION  MASTER_IP        MACHINE_TYPE   NODE_VERSION  NUM_NODES  STATUSinception-serving-cluster  us-central1-f  1.1.8           104.197.163.119  n1-standard-1  1.1.8         5          RUNNING
复制代码


为 gcloud 容器命令设置默认集群,并且发送集群凭证到 kubectl。


$ gcloud config set container/cluster inception-serving-cluster$ gcloud container clusters get-credentials inception-serving-clusterFetching cluster endpoint and auth data.kubeconfig entry generated for inception-serving-cluster.
复制代码

上传 Docker 镜像

现在让我们来把我们的镜像 push 到Google Container Registry,这样我们就可以在 Google Cloud Platform 上面运行了。


首先,我们给 $USER/inception_serving 镜像贴上标签,用 Container Registry 格式以及我们的项目名称,


$ docker tag $USER/inception_serving gcr.io/tensorflow-serving/inception 
复制代码


下面我们 push 镜像到 Registry,


$ gcloud docker push gcr.io/tensorflow-serving/inception
复制代码

创建 Kubernetes ReplicationController 和服务

配置包括不同的副本 inception_inference 被一个 kubernetes Replication Controller 服务器控制。副本是由 Kubernetes 以及外部负载均衡起暴露在外部的。


我们使用那个 Kubernetes 公式 inception_k8s.json 的例子创建他们。


$ kubectl create -f tensorflow_serving/example/inception_k8s.jsonreplicationcontroller "inception-controller" createdservice "inception-service" created
复制代码


来看一下副本控制器和 pods:


$ kubectl get rcCONTROLLER             CONTAINER(S)          IMAGE(S)                              SELECTOR               REPLICAS   AGEinception-controller   inception-container   gcr.io/tensorflow-serving/inception   worker=inception-pod   3          20s
复制代码


$ kubectl get podNAME                         READY     STATUS    RESTARTS   AGEinception-controller-bbcbc   1/1       Running   0          1minception-controller-cj6l2   1/1       Running   0          1minception-controller-t1uep   1/1       Running   0          1m
复制代码


来看一下服务的状态:


$ kubectl get svcNAME                CLUSTER_IP      EXTERNAL_IP      PORT(S)    SELECTOR               AGEinception-service   10.15.242.244   146.148.88.232   9000/TCP   worker=inception-pod   3mkubernetes          10.15.240.1     <none>           443/TCP    <none>                 1h
复制代码


$ kubectl describe svc inception-serviceName:     inception-serviceNamespace:    defaultLabels:     <none>Selector:   worker=inception-podType:     LoadBalancerIP:     10.15.242.244LoadBalancer Ingress: 146.148.88.232Port:     <unnamed> 9000/TCPNodePort:   <unnamed> 32006/TCPEndpoints:    10.12.2.4:9000,10.12.4.4:9000,10.12.4.5:9000Session Affinity: NoneEvents:  FirstSeen LastSeen  Count From      SubobjectPath Reason      Message  ───────── ────────  ───── ────      ───────────── ──────      ───────  4m    3m    2 {service-controller }     CreatingLoadBalancer  Creating load balancer  3m    2m    2 {service-controller }     CreatedLoadBalancer   Created load balancer
复制代码


任何东西上传或者运行都需要时间。服务的外部 IP 地址就在 LoadBalancer 旁边被列出来。

查询模型

我们现在可以从我们的本地主机外部地址查询服务。


$ bazel-bin/tensorflow_serving/example/inception_client --server=146.148.88.232:9000 --image=/path/to/my_cat_image.jpg8.976576 : tabby, tabby cat8.725506 : Egyptian cat6.883981 : tiger cat2.659257 : lynx, catamount2.028728 : window screen
复制代码


你已经在 Kubernetes 里成功部署了 inception 服务。


本文转载自才云 Caicloud 公众号。


原文链接:https://mp.weixin.qq.com/s/Hf5NrNDuNYY5cgYvQXfxaQ


2020-03-12 22:52897

评论

发布
暂无评论
发现更多内容

从问界单日7000台,聊聊智能汽车成熟时

脑极体

问界

运维 | Nginx Proxy Manager反向代理工具

Appleex

运维 nginx反向代理

Databend 开源周报第 113 期

Databend

IntelliJ IDEA安装教程

小齐写代码

Perforce发布《2023游戏开发与设计现状报告》,为游戏开发行业提供参考

龙智—DevSecOps解决方案

perforce 游戏开发与设计现状报告

全流程多元化适配服务,OPPO Android 14 适配率高达98%!

科技热闻

HarmonyOS应用窗口管理(Stage模型)

HarmonyOS开发者

HarmonyOS

Hugging "Hugging Face"

数由科技

低代码 huggingface 大语言模型 huggingfists 多模态模型

聊聊什么是厂商绑定

冯骐

开源 供应链 战略思考 技术 优化体系 厂商绑定

如何正确使用多线程和锁机制来构建可靠的程序

华为云开发者联盟

后端 多线程 开发 华为云 华为云开发者联盟

如何利用动态配置中心在JavaAgent中实现微服务的多样化治理

华为云开发者联盟

云计算 后端 云服务 华为云 华为云开发者联盟

Eclipse、IntelliJ IDEA、PyCharm三种IDE区别

小齐写代码

一款Redis可视化工具:ARDM | 京东云技术团队

京东科技开发者

redis 可视化工具 企业号10月PK榜 ARDM

六个为Rust构建的IDE

树上有只程序猿

rust语言

Python 元组完全指南2

小万哥

Python 程序员 软件 后端 开发

80、90童年回忆之小霸王游戏机网页版

echeverra

小霸王

代码检查过程中为什么需要涉及到编译呢?

华为云PaaS服务小智

云计算 软件开发 华为云 代码检查

全国5000家金融单位将加入信创建设大军,未来数年发展关键期

没有用户名丶

Programming abstractions in C阅读笔记:p166-p175

codists

用 TDengine 3.0 碰到“内存泄露”?定位问题原因很关键

TDengine

时序数据库 内存泄漏 ​TDengine

BOE(京东方)“照亮成长路”百所智慧教室落地偏远地区 携手故宫启动百堂公益课

科技热闻

精彩议程抢先看 | 第四届 CID 大会线下参会报名启动!

OpenAnolis小助手

云计算 架构 深圳 龙蜥社区 CID

当 FineReport 遇见 CnosDB

CnosDB

开源 时序数据库 CnosDB FineReport

源码, AST, IR, CFG之间的关系梳理

华为云PaaS服务小智

云计算 软件开发 华为云

什么是K-均值算法

小魏写代码

深入浅出MySQL MRR(Multi-Range Read)

Java随想录

Java MySQL

使用Kubernetes和TensorFlow Serving将神经网络镜像分类进行弹性扩容_行业深度_才云科技_InfoQ精选文章