AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

深度学习自动构图研究报告

  • 2019-09-11
  • 本文字数:1803 字

    阅读完需:约 6 分钟

深度学习自动构图研究报告


今天带来基于深度学习的图像构图的研究报告,主要涉及了基于 CNN 的图像剪裁方法的研究现状、数据集的发展、以及现有应用。

什么是自动切图

我们在拍摄照片后,第一步要做的就是图像裁剪,也称为后期构图。构图,用于合理安排画面中的元素分布,提升照片的美感。


构图的自动化【1】既可以用于拍摄之前的构图推荐,也可以用于拍摄之后的自动调整,在许多的缩略图自动裁剪中也有用处,甚至用于自动拍照。


我在公众号和知乎的专栏中已经多次讲过计算机美学了,也介绍过现有的产品,所以这里不再过多赘述。下面我们说说计算机构图的原理。

计算机构图的研究方法

接下来我们从这 2 个方面来讲讲计算机构图算法的原理。

1.1 显著目标方法

【2-3】也称之为 Attention-Based 的方法,它基于一个假设,图像中最显著的区域即照片中最相关的部分,因此我们应该保留最相关的部分,而裁剪其他部分。



如上面左图 1,2 是显著目标概率图,裁剪的时候就在保留显著目标的同时,裁剪掉了其他部分。


这类方法的目标就是研究如何用最小的剪裁窗口使得注意力(图像显著特性)总和最大化,它缺少对图像构图准则以及美学质量的考量,可能会导致剪裁出来的图像不美观。因为已经不是主流研究方法,就不细细说明了。

1.2 美学方法

基于显著目标的方法不是现在的主流,而基于美学的方法更加符合摄影师构图的原理,它要求裁剪出美学质量分数更高的区域。



上图文【4】是比较早的研究思路,它通过滑动窗口的方法获取一系列的候选裁剪框,然后从中选择美学分数最高的。这一类方法的问题就是效率太低,计算量太高,根本无法实用。



文【5】提供了不同的思路,如上图。它训练了一个显著目标检测网络,可以得到显著目标区域的初始化框,在它的附近,就可以采用不同的大小和比例,获取一系列候选的裁剪框,网络如下。



训练了另一个美学评估网络,用于选取美学分数更高的裁剪框。由于这个方法,只需要 1 次特征提取,且两个网络共享了若干神经网络卷积层,大大提高了剪裁窗口获取的效率,网络如下。



文【6】使用增强学习来更高效地搜索裁剪框,网络结构如下。



相比上面的两种方法,它需要更少的候选窗口与更少的运行时间,可以获得任意尺度位置更精确的剪裁窗口。


最新的研究来自于 adode 2018 年[7]的文章。该文章包含了两个网络,一个是 view proposal network,用于提取候选框。另一个是 view evaluation net,用于从候选框中选择美学价值最高的,网络如下。



该文另一个贡献是整理了一个大型高质量的数据集,因为现有的数据集太小是限制研究的最主要原因。

数据集

下面介绍两个主要的数据集。

1.1 FCDB

FCDB【1】数据集是一个专门为图像剪裁而设计构建的数据集。这个数据集一共包含 1743 张经过人工标记剪裁窗口的图片与 34130 张与原始图像相匹配的剪裁图像对。数据集里的每张照片都从专业摄影照片分享社区 Flickr 上下载后经人工筛选得到,具有较高的美学特征与较好的构图。

1.2 CPC[7]

这是 adobe 整理的,包含 10800 张图,超过 1 million 的图像对,每一个图像对就是原图和它的裁剪图,他们会有相对美学的标注。为了保证分布的广泛性,不仅选择了专业的图片,也选择了日常生活中的图片。


另外还有一些小的数据集,不一一列举。

优化目标

怎么评估一个自动裁剪算法的好坏呢?下面介绍两个。

3.1 IoU


平均交叉区域 average intersection-over-union,这也是目标检测中使用的优化目标。上式中 N 为输入图片的总数,wig 为第 i 幅输入图像 ground truth 的窗口,wic 为不同方法剪裁出的第 i 幅输入图像的最优窗口,IoU 的值越大说明剪裁的最优窗口与 ground truth 的窗口越接近,即剪裁的效果越好。

3.2 平均边界位移


平均边界位移 average boundary displacement。上式中 N 为输入图片的总数,


big(l,r,u,d)为第 i 幅输入图像 ground truth 的窗口 4 条边与原图像对应边的距离,bic(l,r,u,d)为不同方法剪裁出的第 i 幅输入图像的最优窗口 4 条边与原图像对应边的距离,Disp 的值越小说明剪裁的最优窗口与 ground truth 的窗口越接近,即剪裁的效果越好。

总结

随着研究人员的活跃和数据集的增长,自动构图算法一定会在这几年得到快速的发展。


作者介绍


言有三,真名龙鹏,曾先后就职于奇虎 360AI 研究院、陌陌深度学习实验室,6 年多计算机视觉从业经验,拥有丰富的传统图像算法和深度学习图像项目经验,拥有技术公众号《有三 AI》,著有书籍《深度学习之图像识别:核心技术与案例实战》。


原文链接


https://mp.weixin.qq.com/s/eyIeLaBZ0f_EsxglsUuH8A


2019-09-11 20:313073

评论

发布
暂无评论
发现更多内容

一场关于代码注释的争执,引发的三点思考

架构精进之路

编码 经验分享 七日更 3月日更

git 教程 --git cherry-pick 命令

生之欢愉,时间同行

git 程序员 git cherry-pick

11.react concurrent mode(并发模式是什么样的)

全栈潇晨

React React Hooks

2021抖音面经分享:Java进阶核心知识集/算法刷题宝典(金三银四必备)

比伯

Java 编程 架构 面试 程序人生

无线网络的用户隔离功能

一桶食用油的数字化

吴俊宇

数字化转型 鲁花

科学的互联网思想 指引我国网络强国建设稳步前行

CECBC

网络安全

10.scheduler&lane模型(来看看react是暂停、继续和插队的)

全栈潇晨

源码分析 React React Hooks

【回溯算法】经典题:求目标和的组合方案 ...

宫水三叶的刷题日记

面试 LeetCode 数据结构与算法

2021程序员春招必备:Java面试知识点+答案(7大分类 5000字解析)

比伯

Java 编程 架构 面试 程序人生

dubbo 源码 v2.7 分析:通信过程及序列化协议

程序员架构进阶

架构 RPC 七日更 dubbo源码 3月日更

9.hooks源码(想知道Function Component是怎样保存状态的嘛)

全栈潇晨

源码分析 React React Hooks

通俗易懂!看了不会忘的网络面试知识点

编程 架构 面试

MySQL数据库的安装与使用

若尘

MySQL 数据库

科技强国梦的百度式注脚:扎根土壤、拥抱变局、眺望星空

脑极体

12.手写迷你react(短小精悍就是我)

全栈潇晨

源码分析 React React Hooks

迎战大厂!“金三银四”和春招通过率达95%的Java面试要点集锦

Java 程序员 架构 面试

Wireshark数据包分析学习笔记Day1

穿过生命散发芬芳

Wireshark 数据包分析 3月日更

Elasticsearch Index Management 索引管理

escray

elastic 七日更 28天写作 死磕Elasticsearch 60天通过Elastic认证考试 3月日更

工作三年,小胖问我:什么是生产者消费者模式?菜到抠脚!

一个优秀的废人

Java 多线程 阻塞队列 生产者与消费者

区块链产业革命:解决融资租赁之谜

CECBC

区块链

白话Go内存模型&Happen-Before

Gopher指北

Go 语言

Kubelet从入门到放弃系列:GPU加持

DCOS

AI gpu Kubernetes 云原生

三十而已

ES_her0

28天写作 3月日更

项目汇报会复盘

Geek_XOXO

Mysql安装

Sakura

(28DW-S8-Day13) 在线教育班型和角色

mtfelix

28天写作

windows 搭建ftp服务

xiezhr

vsftpd ftp ftp服务 文件服务 3月日更

程序员成长第十九篇:要不要转管理岗?

石云升

程序员 28天写作 职场经验 管理经验 3月日更

区块链电子合同--电子合同区块链签约平台

13530558032

Docker的三言两语-基础篇

一个大红包

Docker 28天写作 3月日更

深度学习自动构图研究报告_AI&大模型_言有三_InfoQ精选文章