写点什么

机器学习,像极了一场足球比赛

  • 2021-03-04
  • 本文字数:2047 字

    阅读完需:约 7 分钟

机器学习,像极了一场足球比赛

本文最初发表于 Towards Data Science 博客,经原作者 Renato Boemer 授权,InfoQ 中文站翻译并分享。


如果向没有技术背景的人解释清楚机器学习,可能有些难度。


如果你是一名专业数据科学家,你会经常被问到一个问题 —“你这个工作是干什么的?”如果向没有技术背景的人解释清楚这个问题,可能有些难度。


卡内基梅隆大学著名计算机科学家 Tom Mitchell 教授给机器学习下的定义是


“一种计算机程序,它从经验 E 中学习某些类别的任务 T 和性能指标 P,如果它在任务 T 中的性能(用 P 来衡量) 随着经验 E 而提高。”


坦率地说,在任何非正式对话中,引用这种专业性很强的定义可能很难让对话继续下去。


而作为一个数据科学家,又经常需要向非技术性的受众解释技术术语。因此,每当我发现自己在解释自己的工作时,我就用到了我的哲学老师曾经用到的同样的技巧:足球类比。即便人们不喜欢足球,他们也可以以某种方式把机器学习和足球运动及规则联系在一起。


但愿足球的比喻有助于你理解或向其他人解释机器学习。

球员(数据)


显然,没有球员,就没有足球赛。无论你是在温布利球场进行职业级别的球赛,还是在街上和朋友们一起踢球,这都不重要。没有球员,那些地方只是一个空旷的足球场和街道。


对于机器学习来说,数据就像球员,没有数据,一切都无从下手。不过,并非所有数据集都是相同的,就像球员一样,C 罗和梅西是伟大的球员,他们超越了人们对于一场精彩的足球比赛的期待。但如果让我上场的话,这就不可能了。因此,优秀的球员才会有出色的表现。


类似地,数据科学中也有一句名言:“垃圾进,垃圾出”。无论你的编程技术多么精湛,或者你的数学知识多么渊博,但如果没有有用的数据集,你的机器学习项目很可能会使你的团队失望。

足球经理(数据准备)


一支足球队的成功离不开足球经理。即便拥有挑选顶级球员的豪华条件,英格兰国家足球队自 1966 年以来也再没有赢得过世界杯。足球经理负责决定谁将参加世界杯。同时,他也负责为球员提供指导,指导日常训练。这个过程很花时间,如果不能很好地完成,球队就不能为下届冠军做好准备。


据一份研究报告称,约 80% 的数据科学家会做数据准备和数据清理。数据专业人员必须将他们的数据集转化为机器学习模型可以学习的格式(例如,将数据归一化,处理空白值等)。不论对于数据科学家还是足球专业人士,这些都不是最令人兴奋的事情。

足球战术(机器学习模型)


球队要想夺冠,就必须根据每个对手的情况改变战术。举例来说,如果美国国家足球队面对四届世界冠军德国国家足球队,他们很有可能建立一个强大的防守体系。若美国队对阵冰岛足球队,则可采用强攻策略,采用不同的进攻战术。因此,一支经过良好训练的球队,只要做到战术合理,那么在 90 分钟内,很有可能进球并取得胜利。


机器学习从业者必须根据给定的特定数据集和期望的结果来决定要应用哪种算法或模型。举例来说,机器学习专业人员根据问题来选择预测模型:分类模型是关于预测标签的,而回归模型是关于预测数量的。因此,熟知哪些规则和技术是项目成功的关键。如,K- 最近邻、逻辑回归、朴素贝叶斯分类器和随机森林是一些常用的机器学习模型。

足球设备(硬件和软件)


足球在不同位置需要不同的装备和训练。举例来说,只有门将才能用手触球。因此,他们需要(特殊的)手套和独特的体能训练,而其他人则需要来回奔跑 90 分钟,并尝试用额头进球得分。另外,拥有强大赞助商的团队可以雇佣营养师、医学专家甚至数据科学家来分析表现数据。归根结底,设备和独特的专业人才能够帮助一支球队在世界杯上获得成功。


类似地,要处理一个很小的数据集(1000 行×5 列)来创建一些图形,这些图形可以在标准笔记本电脑上使用 Microsoft Excel 生成,但如果要从多个服务器上提取数据并处理数百万行的数据,就需要特定的编程语言 Python 和具有非凡计算能力的高性能设备。



不同联盟(领域专长)


不管你走到哪儿,可能总会有人在踢足球,可能是孩子 / 成人,男人 / 女人,室内 / 业余,线上 / 户外或业余 / 职业等。这都不重要,总有人在玩。另外,你会遇到技术水平的巨大差异。


足球不会因为不同的技术水平和比赛类型而存在缺陷,这正是足球运动的多样性和包容性。每种技术水平或竞赛类型都可以满足某种特殊的需求。有些人喜欢在户外的草地上踢球,而另一些人则喜欢在网上与朋友一起踢球。这也没关系,这些人专攻某一种类型的足球。


机器学习就像足球一样。不同的专业人员在各自的领域拥有不同的专长和工作,例如,商业和企业领域(金融市场);学术和技术领域(在大学研究开发新算法)。

总结


当你正在成为机器学习专家时,你必然会向来自不同背景的人解释你的工作。这个简单有效的类比可以帮助你让他们更容易理解机器学习。关注受众对足球的普遍印象,并与机器学习建立易于记忆的联系。但愿现在,你有了一个有趣的类比,来比喻和通俗解释那些日常生活中的复杂话题。


作者介绍:


Renato Boemer,企业家,毕业于剑桥大学。爱好数据科学和人工智能。


原文链接:


https://towardsdatascience.com/machine-learning-is-like-football-e3e3ace8ce7a

2021-03-04 10:302131
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 597.7 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

白鲸开源“创客北京2025”再摘殊荣,聚焦Agentic AI时代数据基础设施建设

白鲸开源

大数据 开源 DataOps 白鲸开源 WhaleStudio

百分点科技BD-OS获华为鲲鹏认证,全栈信创助推政企智能升级

百分点科技技术团队

教你数分钟内创建并运行一个 DolphinScheduler Workflow!

白鲸开源

Java 大数据 开源 Apache DolphinScheduler 任务调度

破解云VR教育普及难题:点量实时云渲染——实现跨终端无界协同

点量实时云渲染

3D渲染 vr 云渲染 虚拟现实 #云计算

亮相2025年服贸会,天翼云打造高质量算力服务新生态!

天翼云开发者社区

云计算

【RFID智能工具柜哪家好】企业如何选到高效可靠的工具管理系统?

斯科信息

斯科信息 RFID智能工具柜

数据传输中的三大难题,ETL 平台是如何解决的?

谷云科技RestCloud

数据处理 数据传输 数据同步 ETL 数据集成工具

用Comate Zulu开发一款微信小程序

Comate编码助手

微信小程序 AI 编程 文心快码 文心快码Zulu

App 加载慢到崩溃?三招帮你彻底告别 “转圈圈”!

xuyinyin

APP弱网测试完整攻略【国庆出游特辑版】

优测云服务平台

弱网测试

Kafka4.0 可观测性最佳实践

观测云

kafka

如何实现高效的日志收集与管理?

运维有小邓

使用EventLog Analyzer进行日志取证分析

运维有小邓

抢先体验智能测试时代,QA必备AI测试工具

测试人

人工智能 软件测试

天翼云第九代弹性云主机:让每一次计算快人一步

天翼云开发者社区

云主机

电能管理系统(源码+文档+讲解+演示)

深圳亥时科技

#开源

从负荷分析定项目运维要点

Tecjt_锦图科技

Yolo模型训练的第一个Step

Jason黄

yolo

Aloudata AIR 推出 AI 数据画布:「拖拽+对话」即可实现跨源数据加工与查询

Aloudata

数据分析 数据开发 智能开发 数据编织

再见 Cursor,Qoder 真香!这波要改写 AI 编程格局

阿里巴巴云原生

阿里云 云原生 Qoder

免费学习优秀作品!和鲸支持 2025 年第 18 届中国大学生计算机设计大赛大数据主题赛圆满收官!

ModelWhale

中国大学生计算机设计大赛 大数据主题赛

非凸智能算法上线华福证券,打造高效交易新范式

非凸科技

最新财务机器人品牌榜:5大维度评出谁是真正的智能助手

Techinsight

为什么说 iPaaS 是企业数字化转型的加速器?

谷云科技RestCloud

数据处理 数据传输 集成平台 ipaas

Mermaid代码怎么变成流程图?6个Mermaid在线生成器盘点

职场工具箱

人工智能 流程图 Ai绘图 Mermaid AI生成流程图

有点意思!Java8后最有用新特性排行榜!

王磊

Ubuntu 22 下 DolphinScheduler 3.x 伪集群部署实录

白鲸开源

Java 大数据 ubuntu 开源 Apache DolphinScheduler

K8s Application模式下的flink任务执行精要

天翼云开发者社区

k8s 计算

从“分散”到“统一”,中控技术利用SeaTunnel构建高效数据采集框架,核心数据同步任务0故障运行!

白鲸开源

开源 数据同步 数据集成 Apache SeaTunnel 中控技术

5 分钟 SAE 极速部署 Dify,赢取户外折叠椅和社区积分

阿里巴巴云原生

阿里云 Serverless 云原生 dify

小份数GEO服务助力中小企业

跑一跑

AI geoai

机器学习,像极了一场足球比赛_文化 & 方法_Renato Boemer_InfoQ精选文章