写点什么

Wormhole 流式处理平台设计思想

  • 2020-02-13
  • 本文字数:3058 字

    阅读完需:约 10 分钟

Wormhole 流式处理平台设计思想

导读:互联网的迅猛发展使得数据不再昂贵,而如何从数据中更快速获取价值变得日益重要,因此,数据实时化成为了一个大趋势。越来越多的业务场景需要实时分析,以极低的延迟来分析实时数据并给出分析结果,从而提高业务效率,带来更高价值。流式处理作为实时处理的一种重要手段,正在因数据实时化的发展而蓬勃发展。本文是敏捷大数据(Agile BigData)背景下的实时流式处理平台 Wormhole 的开篇介绍。Wormhole 具体是一个怎样的平台呢?一起来看一下吧!


一、Wormhole 背景介绍


在流式计算领域,越来越多成熟的技术框架出现在开源世界,如 Storm、Heron、Spark、Samza、Flink、Beam 等。流式技术也逐步进化发展,支持流上丰富计算语法(类 SQL)、支持 at least once 或 exactly once 语义、支持高可靠高可用、支持高吞吐低延迟、支持基于事件时间计算、支持统一整合接入抽象等,这些都从不可能变为可能。


然而,虽然流式处理的技术已经很丰富,流式处理在企业中的实施仍然存在较大难度,主要原因是成本高,需求上线周期长等,而产生这样问题的原因又分两个方面,一是企业组织结构,二是技术。


传统数据仓库和 BI 的组织结构都是集中相关技术人员成立独立大数据部门,各个业务部门向其提需求,做定制化开发。


1530517677780039278.png


企业组织结构


如上图,大数据部门不仅仅做大数据环境运维,还做定制化开发和线上业务维护。恰恰这两点会消耗大量的人力,也增加了管理和沟通成本。举一个需求开发的例子,如下图:


1530517692740038104.png


需求开发流程


上图是企业普遍使用的一个开发流程,这里边就反应出一些问题:


· 人力成本高


从此图可以看出,至少需要 3 个角色的人员才能完成一个需求,而且流式开发人员要花很多时间了解需求、业务、表结构等等


· 上线周期长、效率低


所有需求都是由产品人员提出,由业务人员分析,然后与流式开发人员一起设计开发完成,且需要大量时间测试及验证结果


· 复用低


在需求中,有很多业务是类似的,但因业务和定制化问题,所以无法很好的做到代码复用,导致重复开发比较多


· 业务维护成本高


当上线的需求有变化时,就要在原有代码的基础上改造,流式处理开发人员也需要再一次了解业务流程、表结构等等,还是需要很多的人力资源,并且周期也很长,同时改动会增加出问题的概率


· 大量消耗资源


为了功能隔离和降低维护难度,每个定制化功能都要启动一个流式应用,无法复用,需要占用大量硬件资源


目前流式处理的种种问题很大的制约了企业实时大数据的发展,各个公司都在寻找一条更轻量的解决之道。我们根据多年在实时大数据项目中的实践和经验积累,自主研发了流式处理平台——Wormhole,很大程度上解决了上述各类问题。下面我们来介绍一下 Wormhole 的具体情况。


二、Wormhole 是什么


Wormhole 是一个面向实时大数据项目实施者的流式处理平台,致力于统一并简化大数据开发和管理,尤其针对典型流式实时/准实时数据处理应用场景,屏蔽了底层技术细节,提供了极低的开发门槛。项目实施者只需简单配置及编写 SQL 即可支持大部分业务场景,使得大数据业务系统开发和管理变得更加轻量、可控可靠。


1530517731779098626.png


Wormhole 数据处理样例


Wormhole 主要基于 Spark 技术,实现了基于 SQL 的流上数据处理和异构系统幂等写入等相关功能。如上图所示,Wormhole 接入流上的数据,然后将数据中的出生日期通过用户编写的 SQL 处理为年龄,写入到另外一个存储系统中。


Wormhole 通过技术手段实现基于 SQL 的流式处理方案,大大降低了流式处理的技术门槛;同时通过平台化和可视化等实现了职能的变化,减少了整个需求生命周期的参与角色数量,精炼了整个开发过程,进而缩短了开发周期,也减少了开发和维护成本。


三、Wormhole 设计目标


基于敏捷大数据的思想,Wormhole 的设计目标如下:


· 平台化/组件化


通过平台化支持,组件化组装实施,可以快速对原型进行验证,和需求方形成反馈闭环快速迭代


· 标准化


对数据格式进行标准化,达到通用效果,减少数据格式化和维护的成本


· 配置化/可视化


用户可视化配置、部署、管理、监控,降低大数据产品开发门槛,确保高质量产出


· 低延迟/高性能/高可用


根据实时性的要求,流式处理要求更低的延迟,并且要求更高的吞吐量,以及容错能力,保证系统 7*24 正常运行


· 自助化/自动化


让企业从数据中心化转型为平台服务化,让每个数据从业者都能够有更多的自助服务,并释放数据处理能力,系统替代人工完成重复低级的工作,让从业者回归数据和业务本质


Wormhole 平台的建设带来的效果主要体现在以下几方面:


· 组织结构更合理:


如下图,大数据相关部门不再做定制化开发和业务维护,而是更专注平台化和大数据环境的稳定,大大减少了人力资源的浪费


1530517744799079386.png


基于 Wormhole 的组织结构


· 降低了流式处理开发的技术门槛


流式处理的开发模式变为了业务人员通过可视化配置和编写 SQL 即可完成 80%以上的业务场景,不再需要对流式处理技术有很深的理解


· 缩短了需求上线周期:


如下图所示,一个需求从提出到上线只需要产品人员和业务人员,大幅降低了沟通和学习成本,进而大大缩短了需求开发上线周期。


1530517757120098805.png


基于 Wormhole 的需求开发流程


四、Wormhole 设计规范


1530517780607062902.png


Wormhole 流程设计图


上图是 Wormhole 的一个设计介绍,体现了流式处理的从输入到输出的过程,在这个过程中,Wormhole 定义新的概念,将整个流式处理进行了标准化,将定制化的流式计算变为标准化的流式处理,并从三个纬度进行了高度抽象。


· 统一数据逻辑表命名空间——Namespace


Namespace:数据的“IP”,通过 7 层结构唯一定位数据对应的物理位置,即


[Data System].[Instance].[Database].[Table].[Table Version]. [Database Partition].[Table Partition]


1530517847788009164.png


· 统一通用流消息协议——UMS


o UMS 是 Wormhole 定义的流消息协议规范


o UMS 试图抽象统一所有结构化消息


o UMS 自身携带结构化数据 Schema 信息,方便数据处理


o UMS 支持每一个消息中存在一份 Schema 信息及多条数据信息,这样,在存在多条数据时可以降低数据大小,提高处理效率


说明:


1530517895928046153.png


o protocol-type 目前支持 data_increment_data(增量数据)和 data_initial_data(初始化全量数据)


o schema-namespace 指定数据对应的 namespace


o schema-fields 描述每个字段的名称、类型、是否可空。ums_id_代表记录 id,要求保证递增;ums_op_代表数据操作(i:插入;u:更新;d:删除);ums_ts_代表数据更新时间


o payload-tuple 指一条记录的内容,与 schema-fields 一一对应


注:在 Wormhole_v0.4.0 版本后,应社区需求,支持用户自定义半结构化 JSON 格式


· 统一数据计算逻辑管道——Flow


o Flow 是 Wormhole 抽象的流式处理逻辑管道


o Flow 由 Source Namespace、Sink Namespace 和处理逻辑构成


o Flow 支持 UMS 和自定义 JSON 两种消息协议


o Flow 支持 Event 和 Revision 两种 Sink 写入模式


o Flow 统一计算逻辑标准(SQL/UDF/接口扩展)


说明:


1530517906927020049.png


Flow


上图中蓝色框和箭头组成了一个 Flow,首先从 TopicA 中读取 Namespace1 (SourceNamespace)的数据,数据协议为 UMS 或者自定义 JSON,然后处理用户配置好的数据处理逻辑,输出到 Namespace2 (SinkNameSpace)对应的数据系统中,写入支持 insertOnly 和幂等(对同 key 且不同状态的数据保证最终一致性)。


作为一个实时大数据流式处理平台,Wormhole 的设计目标和设计规范最终都是为流上处理数据而服务。本篇为 Wormhole 的具体功能做铺垫,下篇系列文章我们将为大家介绍 Wormhole 的具体功能。


本文转载自宜信技术学院网站。


原文链接:http://college.creditease.cn/detail/156


2020-02-13 21:52965

评论

发布
暂无评论
发现更多内容

我们从 CircleCI 安全事件获得的3个经验教训

SEAL安全

安全 软件供应链 企业号 2 月 PK 榜 端点保护 恶意软件检测

同步计数器设计与建模

timerring

FPGA

Flink Table Store 典型应用场景

Apache Flink

大数据 flink 实时计算

搞懂设计模式——代理模式 + 原理分析

京东科技开发者

jdk 代理 cglib 框架 企业号 2 月 PK 榜

react源码分析:babel如何解析jsx

flyzz177

React

react源码中的协调与调度

flyzz177

React

携程MySQL迁移OceanBase最佳实践|分享

OceanBase 数据库

数据库 oceanbase

KCL 与其他 Kubernetes 配置管理工具的异同 - Helm 篇 - Helm 篇 [一个自研编程语言能做什么?(系列 3)]

Peefy

Kubernetes DevOps 编程语言 #开源

云小课|GaussDB(DWS)数据存储尽在掌控,冷热数据切换自如

华为云开发者联盟

开发 华为云 数据存储 企业号 2 月 PK 榜 华为云开发者联盟

A100 买不到了,只有小显卡怎么训大模型

MegEngineBot

深度学习 开源 大模型 显卡、gpu MegEngine

从历代GC算法角度刨析ZGC

京东科技开发者

ZGC JVM GC算法 垃圾回收算法 企业号 2 月 PK 榜

量化Python交易系统开发技术,合约量化系统开发源码部署方案

I8O28578624

【IntelliJ IDEA】idea常用快捷键汇总

No8g攻城狮

IDEA intellij IntelliJ IDEA

【IntelliJ IDEA】idea中的插件之一:Free Mybatis plugin跳转插件的使用(方便在Dao接口和Mappper XML文件之间进行切换)

No8g攻城狮

插件 IntelliJ IDEA

用javascript分类刷leetcode21.树(图文视频讲解)

js2030code

JavaScript LeetCode

前端leetcde算法面试套路之堆

js2030code

JavaScript LeetCode

Node.js 应用全链路追踪技术——全链路信息存储

vivo互联网技术

nodejs OpenTracing zipkin

高性能存储SIG月度动态:ublk完成POC、dsms-storage在Anolis OS上成功适配

OpenAnolis小助手

技术 高性能存储 龙蜥社区 sig 月报

Flomesh Ingress 使用实践(三)多租户 Ingress

Flomesh

命名空间 多租户 ingress Ingress Controller

react源码中的生命周期和事件系统

flyzz177

React

chatgpt背后的人工和智能

刘旭东

ChatGPT

Spring Data + DDD = 王炸!!

程序知音

用 AI 取代人工?或许 LLMs 可以给你答案

鼎道智联

#人工智能

区块链DEFI质押挖矿系统开发流程丨土狗币智能合约系统开发源码方案

I8O28578624

直呼牛逼!阿里最新SpringBoot进阶笔记涵盖了SpringBoot所有骚操作

程序知音

Java ssm springboot Java后端 Java进阶

前端leetcde算法面试套路之树

js2030code

JavaScript LeetCode

简单好上手!1分钟带你体验Apipost

叶小柒

ITSM | Atlassian被Gartner评为IT服务管理平台魔力象限的领导者

龙智—DevSecOps解决方案

Atlassian ITSM Gartner

动态防御|零信任安全的自动化枢纽

权说安全

网络安全 零信任 动态防御

Elasticsearch dynamic_templates 实战 通用配置

alexgaoyh

elasticsearch dynamic_templates index template

一文详解TensorFlow模型迁移及模型训练实操步骤

华为云开发者联盟

人工智能 华为云 昇腾AI 企业号 2 月 PK 榜 华为云开发者联盟

Wormhole 流式处理平台设计思想_文化 & 方法_赵平_InfoQ精选文章