2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

营销部门投资 AI 前应思考的 3 个问题

  • 2017-01-22
  • 本文字数:1885 字

    阅读完需:约 6 分钟

人工智能(AI)的出现可能会令营销主管们骨碌着眼睛说“别又来了!”

正如他们所知,营销决策很多时候归结为一个猜谜游戏。营销自动化分析软件可以帮忙,但它们提供的测试和度量工具仅能产生事后见解。而元决策是:如何知道哪种营销技术将真正产生有效的结果?

人工智能技术可以提升人们的决策和预算能力。问题是,在哪里以及如何应用AI 技术。你肯定不想再次陷入到这样的猜谜游戏中,到底营销技术栈的哪个领域从AI 应用收益最大。这只是让猜谜工作从一个领域转移到另一个不同甚至更难理解的领域而已。突然间你就面临一个非常底层的基本问题。

假设已知了AI 可以帮助营销工作的方式范围,很自然的问题是:对于如何部署AI,该怎样决策? Bloomberg Beta 最近的机器智能形势对涉及8 个主分类和多个子分类的数百家公司做了一个榜单,发现在营销组织中部署AI 的方法有无数种。对于建立在高等数学基础上的一个技术部门,一个CMO 应该如何做出明智的决策?

关键是要有一个稳健的框架,用来评估可通过应用AI 技术得到提升的业务领域。

这里的建议可帮助评估在哪里应用AI。

1. 哪些业务流程最浪费预算?

营销人员对于 20 世纪早期 John Wanamaker 的浪费学说已经很熟悉了,他笑称,自己知道花在广告上的钱有一半是浪费了——只是不知道浪费的是哪一半。不幸的是,100 年过去了,在营销过程中依然有着巨大的浪费。可能数百万人访问你的网站,但只有几千人会输入他们的邮件地址并成为注册用户。由此,甚至更多的用户逐步减少,而无法转化为真正的商机:进入购买流程然后成为一名付费客户。只有千分之三的注册用户会最终转化为客户——比例是 250:1;另外的 249,就白白浪费了。如果你能花更少的时间在不太可能转化的用户上,而致力于那千分之三的最有前途用户,这就已经杜绝了很大一部分组织层面的浪费。

一般来讲,一个流程中浪费的百分比越高,机器就越有用;并且越靠近漏斗模型顶部,通常就越浪费。所以,在关注漏斗模型顶部的开销时,比如 banner 广告和邮件广告,AI 会特别有用。因此不要被那些成本很低但触达很多用户的营销活动吸引,比如电子邮件营销。这个成本意味着很低的目标,以及很少定制化的邮件,即使你只花了几分钱在每千次发送上:这损害了你的品牌形象,并且最终损害了邮件营销能力。甚至对于所发送的消息,使用 AI 生成更加个性化、更加让人印象深刻的内容也很有意义,可以在邮件广告营销中减少浪费。

另一方面,针对已有客户的营销往往是一个低浪费运营行为。与完全指望新客户相比,你至少有了相对较少的一些客户,而且与他们已经建立了关系。如果你的产品很好,并且你关注自己的客户,那这个领域可能并不怎么需要 AI。

AI 可以显著改善的高浪费领域,包括展示广告、网站流量、电子邮件营销和事件营销。

2. 什么会带来经济顺差?

经济顺差是一个简单的基本概念:做什么样的投资能获得比投资成本更高的收益?这对于很多营销决策而言是很难提前知道的。但是,通过在比任何人类能力都更大的范围内应用数据建模和预测分析,AI 可以帮助你。

举个例子,假设你正尝试通过填写网站上的表单来获得更多用户,以便提升网站访问到注册用户的转化率。传统的 web 营销方法是使用不同版本的表单做 A/B 测试,微调按钮、颜色、布局,然后重复,直到可以转化最多的站点访客的最佳优化版本。一个机器学习系统不局限于测试表单本身 —— 它还可以检查一个访客到达网站后的每一个可能路径,并给出当一名访客最终触达那条路径时哪些路径是最高转化率。事实上,一个 AI 系统可以为每一个访客给出最优路径,实时判断站点元素以提升成功转化的机会。

3. 拥有什么样的独特数据?

人工智能不是魔法,也不可能在真空中运作。为了效率,AI 系统需要数据 —— 大量的数据。数据集越独特,就越有可能从中挖掘出有趣和有效的见解。可以自问下:这个数据够有多好?是高质量的客户调查数据吗?还是有很多噪声的污染数据?那些有大量高质量数据的业务领域,就是你应该研究应用 AI 的地方。

如果某个领域(比如拿事件营销来说)没有大量相当干净的数据,最好还是让 AI 致力于其他领域。

总的来说,这三个问题能帮助你,让技术努力专注于应用 AI 到最易带来改变的地方。针对营销领域的 AI 技术很适合创造新的经济顺差机会和杜绝浪费,并且在有大量独特数据时实施效果最好。因此集中你的精力吧。

查看英文原文 http://venturebeat.com/2017/01/19/3-questions-marketers-should-ask-before-investing-in-ai/


感谢刘志勇对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-01-22 18:001689

评论

发布
暂无评论
发现更多内容

012云原生之微服务

穿过生命散发芬芳

云原生 10月月更

k8s replicaset controller源码分析(1)-初始化与启动分析

良凯尔

Kubernetes 源码分析 Kubernetes源码 #Kubernetes#

SpringBoot 实战:优雅的使用枚举参数(原理篇)

看山

Java Spring Boot Effective Spring 10月月更

Linux开发coredump文件分析实战分享

良知犹存

Linux

技术公众号小白互助网络

Felix

GitHub 微信公众号 自媒体

大神Jeff Dean相关的一些项目

春秋易简

模块9

Geek_ywh40v

业务中台数据一致性方案

慕枫技术笔记

后端 引航计划

【Flutter 专题】33 图解自定义 View 之 Canvas (一)

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 10月月更

v04.03 鸿蒙内核源码分析(任务调度) | 任务是内核调度的单元 | 百篇博客分析 HarmonyOS 源码

鸿蒙研究站

HarmonyOS 任务栈 OpenHarmony 鸿蒙系统

产品经理技能手册

俞凡

产品经理 产品管理 认知

敬畏用户

FunTester

软件测试 测试 用户 FunTester 用户思维

一文带你盘点“微服务”中的技术点

Simon郎

微服务 Spring Cloud spring cloud alibaba java

linux之yum源设置代理

入门小站

Linux

在线HTML转JS/JSON工具

入门小站

工具

别被vector最后一个元素erase错误

良知犹存

c++

【LeetCode】合并两个有序链表Java题解

Albert

算法 LeetCode 10月月更

stm32-HAL使用stop模式后DMA初始化的问题

良知犹存

stm32

模块九毕业设计

以吻封笺

架构实战营-模块九

NewBranSTONE

架构实战营

模块九作业

Mr.He

架构实战营

stm32-HAL使用usart发送中断判断发送标志库问题

良知犹存

stm32

小程序中如何显示Markdown文本

Changing Lin

10月月更

v05.05 鸿蒙内核源码分析(任务管理) | 任务池是如何管理的 | 百篇博客分析 HarmonyOS 源码

鸿蒙研究站

HarmonyOS OpenHarmony 鸿蒙系统 任务队列

模块九作业

河马先生

架构实战营

iOS开发独家秘籍-代码块Code Snippets

iOSer

ios 代码 ios开发

产品经理职业发展框架

俞凡

产品经理 产品管理 认知

在开源项目或工作项目中使用git建立fork仓库

良知犹存

git

阿里云云计算助理工程师认证(ACA)50个资源合集和备考题库 易筋 ARTS 打卡 Week 72

John(易筋)

ARTS 打卡计划

校友录小程序开发笔记三十一:校庆模块设计与实现

CC同学

风雨兼程,零代码训练营第四期顺利结业

明道云

营销部门投资AI前应思考的3个问题_语言 & 开发_AMAN NAIMAT_InfoQ精选文章