写点什么

为何我们用 Go 而非 Python 来部署机器学习模型?

  • 2020-05-06
  • 本文字数:2326 字

    阅读完需:约 8 分钟

为何我们用 Go 而非 Python 来部署机器学习模型?

作者 Caleb Kaiser 此前曾撰写过《为何我们用 Go 而非 Python 编写机器学习基础设施平台?》,InfoQ 中文站曾经翻译并分享。今天,我们带来了作者的新作《为何我们用 Go 而非 Python 来部署机器学习模型》,在这篇文章中,Cortex Labs 介绍了团队为何用 Go 而非 Python 部署机器学习模型。

本文最初发表在 Towards Data Science,经原作者 Caleb Kaiser 授权,InfoQ 中文站翻译并分享。



Python 是当下最流行的机器学习语言,对这一点大家应该没有什么异议。不过很多机器学习框架进行实际计算使用的是 CUDA C/C++ 等语言,只是它们都提供了 Python 接口。因此,大多数机器学习从业者都是直接使用 Python 工作的。


我们的机器学习基础设施 Cortex 也是如此,它 88.3% 的代码是由 Go 语言编写的。



来源:Cortex GitHub


大规模部署模型不同于编写调用 PyTorch 和 TensorFlow 函数的 Python 脚本。要实际大规模地运行一个生产机器学习 API,我们需要基础设施来做如下事情:


  • 自动伸缩:这样流量波动发生时就不会中断我们的 API(且我们的 AWS 仍然保持可控)。

  • API 管理:处理多个部署。

  • 滚动更新:这样我们就可以在更新模型的同时还可以为请求提供服务。


我们构建了 Cortex 来提供这一功能。我们之所以决定用 Go 语言来编写,是出于以下几个原因:

1.Go 语言已为基础设施社区所接受

就背景而言,我们是软件工程师,而不是数据科学家。我们进入机器学习领域是因为我们想构建像 Gmail 的 Smart Compose 这样的功能,而不是因为我们对反向传播着迷(尽管它确实很酷)。我们想要这样的一个简单工具,它将采用经过训练的模型,并自动实现所需的所有基础设施功能,如可复制的部署、可扩展的请求处理、自动监控等,以便将其部署为 API。


虽然这种从模型到微服务的一体化平台还不存在,但我们之前已经在普通软件中实现了这些功能。我们知道什么样的工具适合这项工作,并且还知道它们是用什么语言编写的。


构建 Kubernetes、Docker 和 Terraform 等工具的团队使用 Go 语言是有原因的。Go 语言的速度很快,能很好地处理并发,可以编译成单一的二进制文件。这样一来,选择 Go 语言对我们来说,风险相对较低。其他团队已经用 Go 语言解决了类似的挑战。


此外,对于基础设施工程师来说,使用 Go 语言编写更容易做出贡献,因为他们可能已经熟悉了这门语言。

2. Go 语言解决了与并发性和调度相关的问题

管理一个部署需要许多服务同时运行,并按照精确的时间表进行。值得庆幸的是,Gorountine、channel(通道)和 Go 内置的 timer 和 ticker 为并发性和调度提供了一个优雅的解决方案。


在较高的级别上,Goroutine 是指 Go 语言通过在一个虚拟独立线程上执行一个原本正常的函数,使其并发运行。一个操作系统线程可以容纳多个 Goroutine。channel 允许 Goroutine 共享数据,而 timer 和 ticker 允许我们调度 Goroutine。


我们在需要的时候使用 Goroutine 来实现并发性,比如 Cortex 需要将多个文件上传到 S3,并行运行这些文件可以节省时间;或者是为了保持一个潜在的、长期运行的功能,比如 CloudWatch 的流日志,以免阻塞主线程。


此外,我们在 Goroutine 中使用 timer 和 ticker 来运行 Cortex 的 autoscaler。我已经写过一份关于如何在 Cortex 中实现副本级自动扩展的的完整版报告,该报告的中心思想是,Cortex 计算排队和进行中的请求数量,计算每个副本应该处理多少并发请求,并进行适当的扩展。


为了做到这一点,Cortex 的监控功能需要以一致的时间间隔执行。Go 的调度器确保在应该进行监视的时候进行监视,而 Goroutine 允许每个监视函数并发地、独立地执行每个 API。


要在 Python 中实现所有这些功能,也许可以使用 asyncio 这样的工具来实现,但 Go 让它变得如此简单,这对我们来说不啻为一个福音。

3. 在 Go 中构建跨平台 CLI 更容易

我们的 CLI 部署模型并管理 API:



来源:Cortex GitHub


我们希望 CLI 在 Linux 和 Mac 上都可以用。最初,我们尝试用 Python 语言来编写 CLI,但用户一直很难让它在不同的环境中使用。当我们在 Go 中重新构建 CLI 时,能够将它编译成单一的二进制文件,这样一来,我们就可以跨平台分发 CLI,而不需要做太多额外的工程计划。


编译后的 Go 二进制代码与解释性编程语言相比,性能上的优势也很明显。根据计算机基准测试的结果来看,Go 的速度明显比 Python 要快得多


无独有偶,许多其他基础设施的 CLI,如 eksctl、kops 和 Helm 客户端等,都是用 Go 语言编写的。

4. Go 有助于构建可靠的基础设施

最后一点,Go 有助于 Cortex 最重要的特性:可靠性。


在所有软件中,可靠性显然很重要,但对于推理基础设施来说,可靠性绝对是最关键的。Cortex 中的一个 bug 可能会让推理费用严重增加。如果存在严重的 bug,那么很有可能在编译过程中被发现。对于一个小团队来说,这是非常有用的。


与 Python 相比,Go 的高冷性质可能会使得它上手变得更痛苦一些,但这些内部的“防护栏”为我们提供了第一道防线,帮助我们避免犯下愚蠢的类型错误。

小结:Python 用于脚本,Go 用于基础设施

我们仍然喜欢 Python,它在 Cortex 中占有一席之地,特别是在模型推理方面。


Cortex 支持 Python 作为模型服务脚本。我们编写 Python,将模型加载到内存中,进行推理前后处理,并为请求提供服务。然而,即使是 Python 代码也被打包到 Docker 容器中,这些容器也是由 Go 语言编写的代码进行编排的。


对于数据科学和机器学习工程来说,Python 将(并且应该)仍然是最流行的语言。但是,当涉及到机器学习基础设施时,我们对 Go 很满意。


作者介绍:


Caleb Kaiser,Cortex Lab 创始团队成员,曾在 AngelList 工作,最初在 Cadillac 供职。


原文链接:


https://towardsdatascience.com/why-we-deploy-machine-learning-models-with-go-not-python-a4e35ec16deb


2020-05-06 09:3911625
用户头像
蔡芳芳 InfoQ主编

发布了 801 篇内容, 共 553.6 次阅读, 收获喜欢 2789 次。

关注

评论 2 条评论

发布
用户头像
所以python到底啥用,就只能写脚本和爬虫了吗。。
2020-05-06 16:46
回复
还有数据分析。
2020-05-28 10:46
回复
没有更多了
发现更多内容

2021年10月云主机性能评测报告

博睿数据

前后端、多语言、跨云部署,全链路追踪到底有多难?

阿里巴巴中间件

阿里云 云原生 中间件 全链路追踪

Eureka 源码之客户端注册

悟空聊架构

Eureka 源码剖析 注册中心 悟空聊架构

面试必备!阿里内部Java面试八股文出炉,教科书式完美回答

Sakura

Java 程序员 架构 面试

大牛呕心力作——Kafka开发实战,助你徜徉大数据时代

redis 程序员 java编程

Bash 脚本简介

码语者

bash Shell

SAP CRM和C4C的内容管理(Content Management)

汪子熙

内容 CRM C4C 11月日更

架构课毕业总结

伏波

架构

如何在实际场景中使用异常检测?阿里云Prometheus智能检测算子来了

阿里巴巴云原生

阿里云 云原生 Prometheus 异常检测

软件架构治理 之 架构混沌之谜

码猿外

架构 软件架构治理

RadonDB ClickHouse on K8s 2.1.0 发布!

RadonDB

数据库 Kubernetes Clickhouse RadonDB

新消费:如何度过从0到1的破局期?

石云升

学习笔记 11月日更 新消费

布局人工智能,银行有的不只是智能客服

CECBC

十年数据库专家,呕心力作MySQL技术精粹,薪资直涨3K其实很轻松

数据库 程序员 MySQL 数据库

模块七作业

Geek_fc100d

「架构实战营」

杂谈—程序人生第一份工作

思想者杰克

程序人生 新手指南 程序

不敢想,做个博客竟如此简单!

程序员鱼皮

博客

央行数字货币即将破茧,一场大变局,震撼全球!

CECBC

云知声 Atlas 超算平台: 基于 Fluid + Alluxio 的计算加速实践

阿里巴巴云原生

阿里云 云原生 实践 Fluid Alluxio

20道阿里面试必问JVM面试专题(文末附送答案及JVM学习文档)

编程 程序员 JVM

pygame 小游戏前的准备工作要做足

梦想橡皮擦

11月日更

杂谈——程序人生我的大学

思想者杰克

电商秒杀系统

伏波

架构

北鲲云超算平台如何成为就生命科学云计算领域先行者?

北鲲云

阿里大牛教你如何用Dubbox+SpringBoot+Docker架构,实现双11项目

编程 程序员 springboot

区块链+农业开启智能化生产时代 解决世界性食品及粮食安全问题

CECBC

端开发技术——5个高效的Flutter开发工具

思想者杰克

CRM WebClient UI的浏览器打印实现

汪子熙

JavaScript CRM SAP UI5 JavaScript图表库 11月日更

【死磕Java并发】-----深入分析synchronized的实现原理

chenssy

死磕 Java 死磕 Java 并发

区块链的抽象与演进

CECBC

赋能优秀传统文化,区块链助力讲好中国故事

CECBC

为何我们用 Go 而非 Python 来部署机器学习模型?_文化 & 方法_Caleb Kaiser_InfoQ精选文章