写点什么

MIT 提出可压缩模型的 AI 框架,激励软件代理探索其环境

  • 2020-05-22
  • 本文字数:1853 字

    阅读完需:约 6 分钟

MIT 提出可压缩模型的AI框架,激励软件代理探索其环境

2020年国际学习表征会议(ICLR)接受的两篇论文中,MIT 的研究者提出了激励软件代理(agent)以探索其所处环境,以及修剪算法来提升 AI 应用程序性能的新方法。总的来说,这两种新方案可以促进工业、商业和家用自主机器人的发展;相比现有的竞品,这些方案不需要那么多的计算能力,但同时功能却更强大。

“好奇心”算法

一支团队提出了一种元学习算法,其可以生成 52,000 个探索算法,这些算法可以让代理更深入地探索自己的周围环境。他们探索了其中两种全新算法,并借此改善了一系列模拟任务的学习过程——这些任务包括让月球车登陆,以及用机械手臂抓起蚂蚁大小的机器人等。



图源 Alex Knight


这支团队的元学习系统首先选择一系列高级操作(基本编程,机器学习模型等等)来引导代理执行各种任务,包括记忆以前的输入、比较和对比当前和之前的输入、利用学习方法更改自己的模块等等。元学习系统从共计三十多种操作中,一次最多组合七种不同操作,从而生成了描述之前提到的 52,000 种算法的计算图。


测试所有的算法将花费数十年时间,所以研究者们首先将从代码结构就可以预测出其糟糕性能的算法排除在外。之后他们在一项基本的网格级导航任务中测试了最有希望的候选算法,该任务需要大量的探索,但计算量很小。表现良好的算法被列为新的基准,随后淘汰了一大堆候选算法。


研究团队表示他们使用了四台机器,搜索运行十多小时之后找到了最佳算法。总数超过一百的高性能算法中,前 16 种有用且新颖,性能可以与人工设计的算法相媲美,甚至还会更好。


研究者将前 16 个模型的优秀性能归因于它们都具备的两个探索特性。首先,代理会因为访问一个新地方而获得奖励,因为这样它们就更可能采取新的行动。其次,一个 AI 模型学习预测代理未来的状态,另一个模型则会回顾过去的状态,二者相辅相成以预测现在状态。这样的话,如果预测错误,则二者都会因发现新东西而受到奖励。


因为元学习进程会生成高级计算机代码作为输出,因此可以将这两种算法分解后查看其决策过程。MIT 研究生马丁·施耐德(Martin Schneider)在一份声明中称“人类可以阅读并解释我们生成的算法,但如果想要真正的理解代码,就需要对每一个变量和操作进行推演,并观察它们如何随着时间演变。”他与另一名研究生 Ferran Alet,MIT 计算机科学与电气工程教授 Leslie Kaelbling 及 Tomás Lozano-Pérez 共同撰写了这份研究论文。


“一方面我们借助计算机的能力来评估大量算法,另一方面我们利用了人类解释并改进这些算法的能力,将这二者结合起来设计算法和工作流程是一项很有趣的开放性挑战。”

缩小 AI 模型

在第二份研究中,一支 MIT 团队提供了一种可靠的,可以在资源受限的设备上运行的模型缩小框架。尽管团队还不能解释为何该框架表现如此出色,但不可否认的是,该压缩方法甚至比一些顶尖的压缩方法实现起来更容易且更快。


该框架是“彩票假设(Lottery Ticket Hypothesis)”的产物。论文显示如果在训练过程中能够确定正确的子模型(submodel),那么即使减少了 90%的参数,模型依旧表现良好。研究的合著者,同时也是“彩票假设”的提出者,建议将模型重新“带回”到早期训练阶段,不带任何参数(例:根据已有数据估算模型内部配置变量),然后再重新训练模型。模型修剪方法通常会导致模型精度随着时间变化逐渐降低,但是这种方式却可以将模型精度还原到最初始的状态。


这为更广阔的 AI 研究领域带来了好消息,为解决该领域的可访问性和可持续性问题带来了希望。去年六月(2019 年 6 月),马赛诸塞州大学阿默斯特分校的研究者发布了一项研究,估算出训练并搜索某模型需要花费的电量,这些电量伴随着约 626,000 磅的二氧化碳排放,相当于美国普通汽车服役周期排放量的近五倍。根据最近的一份Synced报告,华盛顿大学用于生成/检测假新闻的 Grover 机器学习模型在两周的训练中花费了 25,000 美元。


MIT 助理教授韩松表示“很高兴看到新的修剪算法和重新训练技术的不断发展”。韩松建立了行业标准修剪算法 AMC,但并未参与到前文提到的这项研究之中。他最近与他人合著了一篇关于如何提升大型模型的 AI 训练效率的论文,论文中提到的模型包含许多可以针对各种平台定制预训练的子模型。 “(该模型)可以让更多的人得以利用高性能 AI 应用程序。”


MIT 博士学生 Alexa Renda 与 MIT 助理教授/博士学生 Jonathan Frankle 合著了该项研究。二人都是 MIT 计算机科学与人工科学实验室(CSAIL)成员。


延伸阅读:


https://venturebeat.com/2020/04/28/mit-presents-ai-frameworks-that-compress-models-and-encourage-agents-to-explore/


2020-05-22 15:351565
用户头像
刘燕 InfoQ高级技术编辑

发布了 1123 篇内容, 共 607.6 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

下拉推荐在 Shopee Chatbot 中的探索和实践

Shopee技术团队

算法 chatbot 推荐算法

如何快速实现持续交付

阿里云云效

云计算 阿里云 软件开发 CI/CD 持续交付

Tapdata 肖贝贝:实时数据引擎系列(六)-从 PostgreSQL 实时数据集成看增量数据缓存层的必要性

tapdata

数据库 实时数据

春暖花开,等你而来!4月月更挑战开始啦!

InfoQ写作社区官方

热门活动 4月月更

外部数据的合规引入助力银行用户营销系统冷启动

易观分析

隐私计算

云时代,租电脑还是初创型企业最好的选择吗?

阿里云弹性计算

远程办公 无影云电脑 初创型企业

小程序开发入门教程

CRMEB

产品FAQ(常见问题)文档模版

小炮

产品 FAQ

OpenHarmony标准设备应用开发(三)——分布式数据管理

OpenHarmony开发者

OpenHarmony 分布式数据

后端开发—一文详解网络IO模型

Linux服务器开发

reactor 后端开发 Linux服务器开发 网络io 网络模型

华为云GaussDB专家走进课堂,跟莘莘学子聊聊数据库

华为云数据库小助手

GaussDB GaussDB(for openGauss) GaussDB(for MySQL)

week4作业

Asha

龙蜥开发者说:聊一聊我技术生涯的“三次迭代” | 第 3 期

OpenAnolis小助手

技术分享 开发者故事 龙蜥开发者说 突出贡献奖

Microchip推出模拟嵌入式SuperFlash技术解决边缘语音处理难题

极客天地

教你VUE中的filters过滤器2种用法

华为云开发者联盟

Vue 过滤器 filters过滤器 组件过滤器 全局过滤器

软件定义存储厂商大道云行加入龙蜥社区

OpenAnolis小助手

生态 存储技术 龙蜥社区 大道云行 CLA

向工程腐化开炮 | 治理思路全解

阿里巴巴终端技术

Java android 腐化治理 工程腐化

Git教程-帮助开发人员更好的运用Git | 云效

阿里云云效

git 云计算 阿里云 DevOps 开发者

Rust Cell 与RefCell,有啥区别?

非凸科技

Facebook 开源 Golang 实体框架 Ent 现已支持 TiDB

极客天地

从二十年开源经历出发,70 后大龄程序员谈成长、困境与突围

TDengine

数据库 tdengine 开源

适合 Kubernetes 初学者的一些实战练习 (三)

汪子熙

云原生 集群 Kubernetes 集群 Kubernetes, 云原生, eBPF 3月月更

一文带你了解 Python 中的迭代器

踏雪痕

Python 3月程序媛福利 3月月更

《LeetCode 刷题报告》题解内容Ⅱ

謓泽

3月月更

深入垂直业务场景,SaaS版供应商业务协同管理系统促进企业与供应商高效协同

数商云

数字化转型 供应链系统

墨天轮访谈 | 华为云温云博:从客户视角出发,GaussDB(for Redis)究竟“香”在哪里?

墨天轮

数据库 redis 华为云 国产数据库 键值数据库

明天直播:如何测试硬件设备与龙蜥操作系统的兼容性?

OpenAnolis小助手

硬件 直播 开源社区 sig 兼容性

昇思MindSpore行至2022,开源社区成就生态共赢

这不科技

华为 昇思MindSpore

汉化版postman

Liam

Jmeter Postman 接口测试 API swagger

利用 IoTDB 替换 OpenTSDB,服务大唐集团60家电厂,减少95%运维成本

Apache IoTDB

Apache IoTDB

叮咚!参与微服务免费试用,有机会获得腾讯内推资格!

InfoQ写作社区官方

腾讯云 微服务 热门活动

MIT 提出可压缩模型的AI框架,激励软件代理探索其环境_AI&大模型_Kyle Wiggers_InfoQ精选文章