写点什么

深度学习自动构图研究报告

  • 2019-09-11
  • 本文字数:1803 字

    阅读完需:约 6 分钟

深度学习自动构图研究报告


今天带来基于深度学习的图像构图的研究报告,主要涉及了基于 CNN 的图像剪裁方法的研究现状、数据集的发展、以及现有应用。

什么是自动切图

我们在拍摄照片后,第一步要做的就是图像裁剪,也称为后期构图。构图,用于合理安排画面中的元素分布,提升照片的美感。


构图的自动化【1】既可以用于拍摄之前的构图推荐,也可以用于拍摄之后的自动调整,在许多的缩略图自动裁剪中也有用处,甚至用于自动拍照。


我在公众号和知乎的专栏中已经多次讲过计算机美学了,也介绍过现有的产品,所以这里不再过多赘述。下面我们说说计算机构图的原理。

计算机构图的研究方法

接下来我们从这 2 个方面来讲讲计算机构图算法的原理。

1.1 显著目标方法

【2-3】也称之为 Attention-Based 的方法,它基于一个假设,图像中最显著的区域即照片中最相关的部分,因此我们应该保留最相关的部分,而裁剪其他部分。



如上面左图 1,2 是显著目标概率图,裁剪的时候就在保留显著目标的同时,裁剪掉了其他部分。


这类方法的目标就是研究如何用最小的剪裁窗口使得注意力(图像显著特性)总和最大化,它缺少对图像构图准则以及美学质量的考量,可能会导致剪裁出来的图像不美观。因为已经不是主流研究方法,就不细细说明了。

1.2 美学方法

基于显著目标的方法不是现在的主流,而基于美学的方法更加符合摄影师构图的原理,它要求裁剪出美学质量分数更高的区域。



上图文【4】是比较早的研究思路,它通过滑动窗口的方法获取一系列的候选裁剪框,然后从中选择美学分数最高的。这一类方法的问题就是效率太低,计算量太高,根本无法实用。



文【5】提供了不同的思路,如上图。它训练了一个显著目标检测网络,可以得到显著目标区域的初始化框,在它的附近,就可以采用不同的大小和比例,获取一系列候选的裁剪框,网络如下。



训练了另一个美学评估网络,用于选取美学分数更高的裁剪框。由于这个方法,只需要 1 次特征提取,且两个网络共享了若干神经网络卷积层,大大提高了剪裁窗口获取的效率,网络如下。



文【6】使用增强学习来更高效地搜索裁剪框,网络结构如下。



相比上面的两种方法,它需要更少的候选窗口与更少的运行时间,可以获得任意尺度位置更精确的剪裁窗口。


最新的研究来自于 adode 2018 年[7]的文章。该文章包含了两个网络,一个是 view proposal network,用于提取候选框。另一个是 view evaluation net,用于从候选框中选择美学价值最高的,网络如下。



该文另一个贡献是整理了一个大型高质量的数据集,因为现有的数据集太小是限制研究的最主要原因。

数据集

下面介绍两个主要的数据集。

1.1 FCDB

FCDB【1】数据集是一个专门为图像剪裁而设计构建的数据集。这个数据集一共包含 1743 张经过人工标记剪裁窗口的图片与 34130 张与原始图像相匹配的剪裁图像对。数据集里的每张照片都从专业摄影照片分享社区 Flickr 上下载后经人工筛选得到,具有较高的美学特征与较好的构图。

1.2 CPC[7]

这是 adobe 整理的,包含 10800 张图,超过 1 million 的图像对,每一个图像对就是原图和它的裁剪图,他们会有相对美学的标注。为了保证分布的广泛性,不仅选择了专业的图片,也选择了日常生活中的图片。


另外还有一些小的数据集,不一一列举。

优化目标

怎么评估一个自动裁剪算法的好坏呢?下面介绍两个。

3.1 IoU


平均交叉区域 average intersection-over-union,这也是目标检测中使用的优化目标。上式中 N 为输入图片的总数,wig 为第 i 幅输入图像 ground truth 的窗口,wic 为不同方法剪裁出的第 i 幅输入图像的最优窗口,IoU 的值越大说明剪裁的最优窗口与 ground truth 的窗口越接近,即剪裁的效果越好。

3.2 平均边界位移


平均边界位移 average boundary displacement。上式中 N 为输入图片的总数,


big(l,r,u,d)为第 i 幅输入图像 ground truth 的窗口 4 条边与原图像对应边的距离,bic(l,r,u,d)为不同方法剪裁出的第 i 幅输入图像的最优窗口 4 条边与原图像对应边的距离,Disp 的值越小说明剪裁的最优窗口与 ground truth 的窗口越接近,即剪裁的效果越好。

总结

随着研究人员的活跃和数据集的增长,自动构图算法一定会在这几年得到快速的发展。


作者介绍


言有三,真名龙鹏,曾先后就职于奇虎 360AI 研究院、陌陌深度学习实验室,6 年多计算机视觉从业经验,拥有丰富的传统图像算法和深度学习图像项目经验,拥有技术公众号《有三 AI》,著有书籍《深度学习之图像识别:核心技术与案例实战》。


原文链接


https://mp.weixin.qq.com/s/eyIeLaBZ0f_EsxglsUuH8A


2019-09-11 20:313565

评论

发布
暂无评论
发现更多内容

MySql函数

工程师日月

6月月更

盘点:2022年10款比较火的项目管理软件

优秀

项目管理软件

洞见科技承建国家工信安全中心「隐私计算平台」,筑基互联互通生态底座

洞见科技

隐私计算 数据要素

通用池化框架GenericKeyedObjectPool性能测试

FunTester

数据库每日一题---第5天:变更性别

知心宝贝

数据库 前端 后端 6月月更

端午节的咸鸭蛋

红毛丹

前端 6月月更

Spark Shuffle 原理

丛培欣

大数据 spark

客户之声|携程基于 OceanBase 读写分离方案的探索与优化

OceanBase 数据库

数据库 oceanbase

数值转换

Jason199

js 数据转换 6月月更

极客星球 | 开发者服务合规检测护航企业数字生态建设

MobTech袤博科技

信息安全 开发者服务 安全合规检测 SDK检测 数据健康

太卷了!腾讯一面被问到内存满了,会发生什么?

Java全栈架构师

Java Linux 程序员 面试 操作系统

全国首批“持证上岗”的区块链应用操作员来了

CECBC

寻找 Web3 的灵魂

CECBC

当Spring邂逅Kafka,有趣的知识增加了

Geek_rze78a

kafka spring 6月月更

KusionStack 开源有感|历时两年,打破“隔行如隔山”困境

SOFAStack

开源 编程语言 语言 #Github 运维‘

社区动态|SelectDB 联合传智教育推出免费 Apache Doris 中文视频教程

SelectDB

Doris 开源社区 Apaache Doris 开源治理

架构实战营 - 第 6 期 模块八课后作业

乐邦

「架构实战营」

Flutter 开发一个通用的购物车数量编辑组件

岛上码农

flutter 安卓开发 ios 开发 跨平台应用 6月月更

NFT市场进入聚合时代,OKALEIDO成BNB Chain上的首个聚合平台

小哈区块

建立java和jin函数之间的关系

北洋

6月月更

Hoo首发上线CloudChat(CC) 推出空投5,000 USDT活动

区块链前沿News

Hoo

引入区块链技术 是开展碳信息审计的有效举措

CECBC

【LeetCode】马戏团人塔Java题解

Albert

LeetCode 6月月更

同步屏障CyclicBarrier

急需上岸的小谢

6月月更

vue指令-3

小恺

6月月更

每日一题 | LeetCode977 有序数组的平方

武师叔

Leet Code 6月月更

深度学习自动构图研究报告_AI&大模型_言有三_InfoQ精选文章