写点什么

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

  • 2019-11-07
  • 本文字数:1789 字

    阅读完需:约 6 分钟

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

我们对 Apache MXNet 版本 0.12 的发布感到很兴奋。MXNet 社区的参与者密切合作,为用户带来了新的增强功能。在此版本中,MXNet 添加了两项新的重要功能:


  • 对 NVIDIA Volta GPU 的支持,这使用户能够大大减少神经网络模型的训练和推理时间。

  • 对 Sparse Tensor 的支持,这使用户能够以最有利于存储和计算的方式使用稀疏矩阵训练模型。

对 NVIDIA Volta GPU 架构的支持

MXNet v0.12 版本添加了对 NVIDIA Volta V100 GPU 的支持,这使客户训练卷积神经网络的速度比 Pascal GPU 的速度快 3.5 倍。训练神经网络涉及数万亿次的浮点数 (FP) 乘法与加法运算。这些计算通常已使用单精度 (FP32) 完成以实现较高的准确度。但是,最近的研究表明,用户可以通过使用半精度 (FP16) 数据类型的训练获得与使用 FP32 数据类型的训练相同的准确度。


Volta GPU 架构引入了 Tensor Core。每个 Tensor Core 每个时钟周期可执行 64 次乘法和加法混合运算,约为每个 CUDA 核心在每个时钟周期内执行的 FLOPS 的四倍。每个 Tensor Core 执行如下所示的运算:D = A x B + C,其中 A 和 B 是半精度矩阵,而 C 和 D 可以是半精度或单精度矩阵,从而执行混合精度训练。利用新的混合精度训练,用户可以通过对网络的大多数层使用 FP16 并在必要时使用更高精度的数据类型来获得最佳训练绩效,且不会降低精度。



MXNet 使用户能够轻松使用 FP16 训练模型以利用 Volta Tensor Core。例如,您只需在 MXNet 中通过将以下命令选项传递到 train_imagenet.py 脚本即可启用 FP16 训练。


Bash


--dtype float16
复制代码


最近,我们宣布推出一套新的 AWS Deep Learning AMI,它们预安装了针对 Amazon EC2 P3 实例系列中的 NVIDIA Volta V100 GPU 进行了优化的各种深度学习框架,其中包括 MXNet v0.12。只需在 AWS Marketplace 中单击一下鼠标即可开始;或者,您也可以按照此分步指南操作,开始使用您的第一个笔记本

Sparse Tensor 支持

MXNet v0.12 添加了对 Sparse Tensor 的支持,可高效地存储和计算大部分元素为零的张量。我们都很熟悉 Amazon 基于您过去的购买历史记录给出的推荐,并且熟悉 Netflix 基于您过去的查看历史记录和对其他节目的评分给出的节目推荐。这类适用于数百万人的基于深度学习的推荐引擎涉及大部分元素为零的稀疏矩阵的乘法与加法运算。以与在稠密矩阵之间执行矩阵运算相同的方式在稀疏矩阵之间执行的数万亿次矩阵运算在存储和计算方面的效率不高。在默认的稠密结构中存储和操作这类包含许多零元素的稀疏矩阵会导致浪费内存以及对零元素执行不必要的处理。


为了解决这类难点,MXNet 启用了 Sparse Tensor 支持,使 MXNet 用户能够以最有利于存储和计算的方式执行稀疏矩阵运算并更快地训练深度学习模型。MXNet v0.12 支持两大稀疏数据格式:Compressed Sparse Row (CSR) 和 Row Sparse (RSP)。CSR 格式经过优化,可表示包含大量列的矩阵,其中每个行仅包含几个非零元素。RSP 格式经过优化,可表示包含大量行的矩阵,其中大部分行切片都完全是零元素。例如,CSR 格式可用于为推荐引擎编码输入数据的特征向量,而 RSP 格式可用于在训练期间执行稀疏梯度更新。对于大多数常用的运算符 (例如,矩阵点积和元素级运算符),此版本启用对 CPU 的稀疏支持。未来版本中将添加对更多运算符的稀疏支持。


以下代码段说明如何将 scipy CSR 矩阵转换为 MXNet CSR 格式,并使用其中一个向量对其执行稀疏矩阵向量乘法运算。要了解有关在 MXNet 中使用新稀疏运算符的更多信息,请参阅这些教程


Bash


import scipy.sparse as spspimport mxnet as mx# construct a random scipy CSR matrixscipy_csr = spsp.rand(3, 4, format='csr', density=0.5)# convert scipy CSR matrix to MXNet CSR formatmx_csr = mx.nd.sparse.csr_matrix(scipy)# perform sparse matrix-vector multiplicationresult = mx.nd.sparse.dot(mx_csr, mx.nd.ones((4, 1)))
复制代码

后续步骤

MXNet 的入门很简单。可在发行说明中找到此版本的完整更改列表。如果您有疑问或建议,请给我们留言。


作者介绍:



Sukwon Kim 是 AWS Deep Learning 的高级产品经理。他负责开发让客户能够更轻松地使用深度学习引擎的产品,工作重点是开源 Apache MXNet 引擎。在业余时间,他喜欢徒步旅行和旅游。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/apache-mxnet-release-adds-support-for-new-nvidia-volta-gpus-and-sparse-tensor/


2019-11-07 08:00998

评论

发布
暂无评论
发现更多内容

2021字节面经纯分享:面试真题+Java成长笔记

爱好编程进阶

Java 面试 后端开发

@Autowired注解 -【Spring底层原理

爱好编程进阶

Java 面试 后端开发

Flink处理函数实战之三:KeyedProcessFunction类

爱好编程进阶

Java 面试 后端开发

HashMap + 软引用进行缓存

爱好编程进阶

Java 面试 后端开发

JavaWeb之Cookie和Session技术(四)

爱好编程进阶

Java 面试 后端开发

JavaWeb快速入门--Servlet(2)

爱好编程进阶

Java 面试 后端开发

2021春招最新分享:Java一线大厂高岗面试题解析合集(六大专题

爱好编程进阶

Java 面试 后端开发

7步搞懂分布式全内容,我不信面试官还敢“怼

爱好编程进阶

Java 面试 后端开发

JAVA 短链码生成工具类

爱好编程进阶

Java 面试 后端开发

13W字!2021最新发布互联网大厂高频面试技术点!

爱好编程进阶

Java 面试 后端开发

2020年最具影响力的4种编程语言 平均薪资20K+

爱好编程进阶

Java 面试 后端开发

Java7日期时间API

爱好编程进阶

Java 面试 后端开发

【模块八】设计消息队列存储消息数据的MySQL 表格

yhjhero

#架构训练营

2020年Mybatis常见面试题总结(附答案)

爱好编程进阶

Java 面试 后端开发

架构训练营模块八

刘帅

Elasticsearch Query DSL概述与查询、过滤上下文

爱好编程进阶

Java 面试 后端开发

Hibernate和MyBatis的区别比较

爱好编程进阶

Java 面试 后端开发

week6作业

Asha

20年最新金九银十面试必备,教你一份文档吊打面试官,拿到offer

爱好编程进阶

Java 面试 后端开发

Canal 如何实现数据库库事务的一致性

爱好编程进阶

Java 面试 后端开发

DDD领域驱动设计实战-分层架构及代码目录结构

爱好编程进阶

Java 面试 后端开发

ELK + Filebeat + Kafka 分布式日志管理平台搭建

爱好编程进阶

Java 面试 后端开发

JAVA 序列化、反序列化以及serialVersionUID

爱好编程进阶

Java 面试 后端开发

DNS解析时发现域名和IP不一致,访问了该域名会如何(大厂真题

爱好编程进阶

Java 面试 后端开发

git(7)自定义 Git

爱好编程进阶

Java 面试 后端开发

10个经典场景带你玩转SQL优化

爱好编程进阶

Java 面试 后端开发

15 高可用网站的软件质量保证

爱好编程进阶

Java 面试 后端开发

8 应用服务器性能优化

爱好编程进阶

Java 面试 后端开发

ActiveMQ详细入门教程系列(一)

爱好编程进阶

Java 面试 后端开发

Alibaba2021年船新Java架构师成长笔记开源

爱好编程进阶

Java 面试 后端开发

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章