AICon 北京站 Keynote 亮点揭秘,想了解 Agent 智能体来就对了! 了解详情
写点什么

仅用 8 张显卡和一万块钱,清华团队用 7B 模型打败 GPT-4o 数学推理

  • 2025-01-13
    北京
  • 本文字数:1683 字

    阅读完需:约 6 分钟

仅用 8 张显卡和一万块钱,清华团队用7B模型打败GPT-4o数学推理

OpenAI o1 和 o3 模型的发布证明了强化学习能够让大模型拥有像人一样的快速迭代试错、深度思考的高阶推理能力,在基于模仿学习的 Scaling Law 逐渐受到质疑的今天,基于探索的强化学习有望带来新的 Scaling Law。


近日,清华大学 NLP 实验室联合上海 AI Lab,清华大学电子系及 OpenBMB 社区提出一种新的结合过程奖励的强化学习方法—— PRIME(Process Reinforcement through IMplicit REwards),采用 PRIME 方法,研究人员不依赖任何蒸馏数据和模仿学习,仅用 8 张 A100,花费一万块钱左右,不到 10 天时间,就能高效训练出一个数学能力超过 GPT-4o、Llama-3.1-70B 的 7B 模型 Eurus-2-7B-PRIME。


具体而言,研究人员利用 Qwen2.5-Math-7B-Base 作为基座模型,训练出了新模型 Eurus-2-7B-PRIME ,并在美国 IMO 选拔考试 AIME 2024 上的准确率达到 26.7%,大幅超越 GPT-4o,Llama3.1-70B 和 Qwen2.5-Math-7B-Instruct,且仅使用了 Qwen Math 数据的 1/10。其中,强化学习方法 PRIME 为模型带来了 16.7% 的绝对提升,远超已知的任何开源方案。




该项目一经开源就在海外 AI 社区爆火,短短几天 Github 取得 400+ star。


未来,基于 PRIME 方法和更强的基座模型有潜力训练出接近 OpenAI o1 的模型。



_blog 链接:_https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f


_GitHub 链接:_https://github.com/PRIME-RL/PRIME


PRIME 方法介绍


长久以来,开源社区严重依赖数据驱动的模仿学习来增强模型推理能力,但这种方法的局限也显而易见——更强的推理能力需要更高质量的数据,但高质量数据总是稀缺,使得模仿和蒸馏难以持续。虽然 OpenAI o1 和 o3 的成功证明了强化学习有着更高的上限,但强化学习有着两个关键挑战:(1)如何获得精准且可扩展的密集奖励;(2)如何设计可以充分利用这些奖励的强化学习算法。


PRIME 算法从隐式过程奖励(implicit process reward)的思想出发解决这两个问题。隐式过程奖励模型可以仅在输出奖励模型(outcome reward model, ORM)的数据,即答案的最终对错上进行训练,而隐式地建模过程奖励,最终自动训练出一个过程奖励模型,这整个过程都有严格的理论保证。


_详细推导见:_https://huggingface.co/papers/2412.01981



基于隐式过程奖励模型的这种性质,研究人员指出将其应用于强化学习有三大优势:


  1. 过程奖励:隐式过程奖励模型能够为每个 token 提供价值估计,在提供过程奖励的同时无需训练额外的价值模型(value model)

  2. 可扩展性:隐式过程奖励模型只需结果标签即可在线更新。所以,我们可以结合策略模型采样与结果验证器来直接更新 PRM,有效缓解分布偏移与可扩展性问题。

  3. 简洁性:隐式过程奖励模型本质上就是一种语言模型。在实践中,研究人员发现可以直接用初始的策略模型初始化 PRM。


隐式过程奖励解决了 PRM 在大模型强化学习中怎么用,怎么训,怎么扩展的三大问题,甚至不需要训练额外的奖励模型就可以开始强化学习,易用性和可扩展性极佳。


具体的 PRIME 算法流程如下图所示,它是一种在线强化学习算法,能够将每个 token 的过程奖励无缝应用于强化学习流程中。



实验结果


研究人员详细比较了 PRIME 算法和基线方法


相比于仅用结果监督,PRIME 有着 2.5 倍的采样效率提升,在下游任务上也有着显著提升。




研究人员还验证了 PRM 在线更新的重要性,可以看到,在线的 PRM 更新要显著优于固定不更新的 PRM,这也证明了 PRIME 算法设计和合理性



此外,研究人员还额外收集数据,基于 Qwen2.5-Math-Instruct 训练了 SOTA 水平的 EurusPRM,能够在 Best-of-N 采样中达到开源领先水平



showcase 演示


Question (AIME 2024 试题,Claude-3.5-Sonnet 做错)



Answer



Question


Which number is larger? 9.11 or 9.9?


Answer



强化学习是连接已有智能体(大模型)和现实世界(世界模型,具身智能)的桥梁,以及将世界反馈内化为模型智能的路径,将在下一代人工智能的发展中起到重要作用。PRIME 算法创新性地将隐式过程奖励与强化学习结合,解决了大模型强化学习的奖励稀疏问题,有望推动大模型复杂推理能力的进一步提升。


该工作在海外 AI 社区受到了很大欢迎:



2025-01-13 15:336423

评论 1 条评论

发布
用户头像
强化学习是连接已有智能体(大模型)和现实世界(世界模型,具身智能)的桥梁,以及将世界反馈内化为模型智能的路径,将在下一代人工智能的发展中起到重要作用。PRIME 算法创新性地将隐式过程奖励与强化学习结合,解决了大模型强化学习的奖励稀疏问题,有望推动大模型复杂推理能力的进一步提升。
这个说的很对
2025-06-03 07:01 · 江苏
回复
没有更多了

实现同比、环比计算的N种姿势

葡萄城技术团队

数据分析 BI数据分析 同比 环比

云图说|华为云帮助中心最佳实践:源自项目实战的上云指导

华为云开发者联盟

最佳实践 华为云 云图说 帮助中心 业务上云

墨天轮访谈 | OceanBase 白超:海量数据管理,为什么选择OceanBase?

墨天轮

数据库 oceanbase 国产数据库

英特尔以四大超级技术力量,助力数字未来,发布多项进展

科技新消息

数据标准在网易的实践

网易数帆

大数据 数据仓库 数据治理 元数据 数据标准

FinClip+微幕小程序,助力企业全端公私域流量互通

Speedoooo

小程序 WordPress 移动开发 小程序容器

揭秘英特尔未来IPU路线图,开启数据中心“进化之旅”

科技新消息

直播预告 | PolarDB-X 动手实践系列——PolarDB-X Replica原理和使用

阿里云数据库开源

数据库 阿里云 开源 PolarDB-X

在字节跳动,一个更好的企业级SparkSQL Server这么做

字节跳动数据平台

谁说 Zadig 只能复制环境?数百微服务一套环境实现高效协作

Zadig

DevOps 云原生 CI/CD 软件交付

基于 Agora SDK 实现 Windows 端的一对一视频通话(基于3.6.2版本)

声网

人工智能 音视频 sdk

动辄“耗资过亿”的表格工具,究竟难在哪儿?

葡萄城技术团队

netty系列之:我有一个可扩展的Enum你要不要看一下?

程序那些事

Java Netty 程序那些事 5月月更

Spring Security

Zhang

Java spring security

硬件为矛 软件为盾 英特尔分享数据中心GPU的攻守之道

科技新消息

echarts饼图指示器文字颜色设置不同

空城机

eCharts 5月月更

String源码解析-String的使用注意2

zarmnosaj

5月月更

我国类脑计算处于什么水平?人工智能下神经科学启发的类脑计算。

GPU算力

人工智能 液冷服务器 类脑计算 神经科学

4月月更开奖啦!中奖者速来领取!

InfoQ写作社区官方

热门活动

【刷题第五天】1. 两数之和

白日梦

5月月更

英特尔公布数据中心和人工智能领域重大进展,全方位展示强劲领导力

科技新消息

Spring Authorization Server 实现授权中心

Zhang

Java OAuth 2.1 Spring Security OAuth

钉钉 Flutter 跨四端方案设计与技术实践 | Dutter

阿里巴巴终端技术

flutter 移动端 跨端框架 桌面端

玩了一场剧本杀,同车队友“不是人”

脑极体

如何开发 LAXCUS 分布式应用软件(四):编写边缘端软件

LAXCUS分布式操作系统

并行计算 端边云协同架构 分布式操作系统 分布式应用软件

如何开发 LAXCUS 分布式应用软件(三):编写终端软件

LAXCUS分布式操作系统

集群架构 并行计算 端边云 分布式操作系统 分布式应用软件

蝉联第一!金蝶夺取Gartner中国高生产力aPaaS市场冠军!

金蝶云·苍穹

GPU分类和应用现状分析

Finovy Cloud

人工智能 云计算 gpu GPU服务器

如何清除 WordPress 中的缓存

海拥(haiyong.site)

WordPress 5月月更

“四大高手”为你的 Vue 应用程序保驾护航

葡萄城技术团队

维护版式文档技术生态 国际PDF协会向福昕软件发来感谢信

联营汇聚

仅用 8 张显卡和一万块钱,清华团队用7B模型打败GPT-4o数学推理_AI&大模型_OpenBMB 社区_InfoQ精选文章