写点什么

仅用 8 张显卡和一万块钱,清华团队用 7B 模型打败 GPT-4o 数学推理

  • 2025-01-13
    北京
  • 本文字数:1683 字

    阅读完需:约 6 分钟

仅用 8 张显卡和一万块钱,清华团队用7B模型打败GPT-4o数学推理

OpenAI o1 和 o3 模型的发布证明了强化学习能够让大模型拥有像人一样的快速迭代试错、深度思考的高阶推理能力,在基于模仿学习的 Scaling Law 逐渐受到质疑的今天,基于探索的强化学习有望带来新的 Scaling Law。


近日,清华大学 NLP 实验室联合上海 AI Lab,清华大学电子系及 OpenBMB 社区提出一种新的结合过程奖励的强化学习方法—— PRIME(Process Reinforcement through IMplicit REwards),采用 PRIME 方法,研究人员不依赖任何蒸馏数据和模仿学习,仅用 8 张 A100,花费一万块钱左右,不到 10 天时间,就能高效训练出一个数学能力超过 GPT-4o、Llama-3.1-70B 的 7B 模型 Eurus-2-7B-PRIME。


具体而言,研究人员利用 Qwen2.5-Math-7B-Base 作为基座模型,训练出了新模型 Eurus-2-7B-PRIME ,并在美国 IMO 选拔考试 AIME 2024 上的准确率达到 26.7%,大幅超越 GPT-4o,Llama3.1-70B 和 Qwen2.5-Math-7B-Instruct,且仅使用了 Qwen Math 数据的 1/10。其中,强化学习方法 PRIME 为模型带来了 16.7% 的绝对提升,远超已知的任何开源方案。




该项目一经开源就在海外 AI 社区爆火,短短几天 Github 取得 400+ star。


未来,基于 PRIME 方法和更强的基座模型有潜力训练出接近 OpenAI o1 的模型。



_blog 链接:_https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f


_GitHub 链接:_https://github.com/PRIME-RL/PRIME


PRIME 方法介绍


长久以来,开源社区严重依赖数据驱动的模仿学习来增强模型推理能力,但这种方法的局限也显而易见——更强的推理能力需要更高质量的数据,但高质量数据总是稀缺,使得模仿和蒸馏难以持续。虽然 OpenAI o1 和 o3 的成功证明了强化学习有着更高的上限,但强化学习有着两个关键挑战:(1)如何获得精准且可扩展的密集奖励;(2)如何设计可以充分利用这些奖励的强化学习算法。


PRIME 算法从隐式过程奖励(implicit process reward)的思想出发解决这两个问题。隐式过程奖励模型可以仅在输出奖励模型(outcome reward model, ORM)的数据,即答案的最终对错上进行训练,而隐式地建模过程奖励,最终自动训练出一个过程奖励模型,这整个过程都有严格的理论保证。


_详细推导见:_https://huggingface.co/papers/2412.01981



基于隐式过程奖励模型的这种性质,研究人员指出将其应用于强化学习有三大优势:


  1. 过程奖励:隐式过程奖励模型能够为每个 token 提供价值估计,在提供过程奖励的同时无需训练额外的价值模型(value model)

  2. 可扩展性:隐式过程奖励模型只需结果标签即可在线更新。所以,我们可以结合策略模型采样与结果验证器来直接更新 PRM,有效缓解分布偏移与可扩展性问题。

  3. 简洁性:隐式过程奖励模型本质上就是一种语言模型。在实践中,研究人员发现可以直接用初始的策略模型初始化 PRM。


隐式过程奖励解决了 PRM 在大模型强化学习中怎么用,怎么训,怎么扩展的三大问题,甚至不需要训练额外的奖励模型就可以开始强化学习,易用性和可扩展性极佳。


具体的 PRIME 算法流程如下图所示,它是一种在线强化学习算法,能够将每个 token 的过程奖励无缝应用于强化学习流程中。



实验结果


研究人员详细比较了 PRIME 算法和基线方法


相比于仅用结果监督,PRIME 有着 2.5 倍的采样效率提升,在下游任务上也有着显著提升。




研究人员还验证了 PRM 在线更新的重要性,可以看到,在线的 PRM 更新要显著优于固定不更新的 PRM,这也证明了 PRIME 算法设计和合理性



此外,研究人员还额外收集数据,基于 Qwen2.5-Math-Instruct 训练了 SOTA 水平的 EurusPRM,能够在 Best-of-N 采样中达到开源领先水平



showcase 演示


Question (AIME 2024 试题,Claude-3.5-Sonnet 做错)



Answer



Question


Which number is larger? 9.11 or 9.9?


Answer



强化学习是连接已有智能体(大模型)和现实世界(世界模型,具身智能)的桥梁,以及将世界反馈内化为模型智能的路径,将在下一代人工智能的发展中起到重要作用。PRIME 算法创新性地将隐式过程奖励与强化学习结合,解决了大模型强化学习的奖励稀疏问题,有望推动大模型复杂推理能力的进一步提升。


该工作在海外 AI 社区受到了很大欢迎:



2025-01-13 15:336346

评论

发布
暂无评论

架构培训作业

肖春

架构师训练营

Golang 泛型浅析

D

开源 云原生 编译器 语言 Go 语言

区块链电子合同--赋能企业数字化转型

13530558032

1.4 Go语言从入门到精通:Go代理goproxy

xcbeyond

Go 语言 4月日更 goproxy

专科出身,2年进入苏宁,5年跳槽阿里,论我是怎么快速晋升的?

钟奕礼

Java 编程 程序员 架构 面试

零基础学Tableau系列 | 01—Tableau简介、条形图与直方图

不温卜火

数据可视化 数据清洗 4月日更

源中瑞智慧平安社区--为平安生活助力

13530558032

公安合作作战指挥中心,情报分析研判系统建设

Redis 期中测试

escray

redis 学习 极客时间 Redis 核心技术与实战 4月日更

大厂面试必须掌握的 Linux 性能优化题

倪朋飞

Linux 面试 性能优化

探索js让你的网页“自己开口说话”

云小梦

JavaScript 音视频 audioContext API

Java高级研发:2021阿里天猫、中间件、蚂蚁金服JD要求+面题答案

钟奕礼

Java 编程 程序员 架构 面试

美团点评高级1234面:算法+HashMap+Zookeeper+线程+Redis+kafka

钟奕礼

Java 编程 程序员 架构 面试

访问控制相关概念及常见模型

龙归科技

身份和访问管理

勇做全球区块链“分布式存储”领航

CECBC

分布式

4月日更挑战|初夏开更,新人领书

InfoQ写作社区官方

4月日更 热门活动

莫高窟永不褪色的微笑,照耀在华为未曾止步的数据保护征程

脑极体

百家号在线视频编辑器的技术演进

百度Geek说

大前端

WebRtc学习之旅 —— Android端应用开发

小驰笔记

朱嘉明:《量子时代和数字经济2.0 》推荐序

CECBC

数字经济

新动能 · 新机遇:SaaS软件提供商 Zoho 25 周年战略再升级

科创人

安卓开发从零开始!分析Android未来几年的发展前景,安卓系列学习进阶视频

欢喜学安卓

android 程序员 面试 移动开发

gorm源码阅读之schema

werbenhu

Go 语言 gorm

Rust:范型使用trait限定的一点总结

Microwood

rust Trait 范型 范型约束Output Add

DevEco Studio 2.1 Beta3强势来袭

Geek_283163

华为 鸿蒙 开发

2021阿里面试通关手册必备:5000字面经解析(技术/攻克)

比伯

Java 架构 面试 程序人生 计算机

WebRtc学习之旅 —— 初认识

小驰笔记

区块链的创新技术给奢侈品行业带来了新的机会

CECBC

奢侈品

Redis为什么变慢了?一文讲透如何排查Redis性能问题 | 万字长文

Java redis 程序员 架构 计算机

历史命令被黑客删除?教你实时备份

运维研习社

Linux 4月日更 服务器安全

拥抱云原生,基于eBPF技术实现Serverless节点访问K8S Service

UCloud技术

容器 云原生 k8s serverles

仅用 8 张显卡和一万块钱,清华团队用7B模型打败GPT-4o数学推理_AI&大模型_OpenBMB 社区_InfoQ精选文章