开工福利|免费学 2200+ 精品线上课,企业成员人人可得! 了解详情
写点什么

仅用 8 张显卡和一万块钱,清华团队用 7B 模型打败 GPT-4o 数学推理

  • 2025-01-13
    北京
  • 本文字数:1683 字

    阅读完需:约 6 分钟

仅用 8 张显卡和一万块钱,清华团队用7B模型打败GPT-4o数学推理

OpenAI o1 和 o3 模型的发布证明了强化学习能够让大模型拥有像人一样的快速迭代试错、深度思考的高阶推理能力,在基于模仿学习的 Scaling Law 逐渐受到质疑的今天,基于探索的强化学习有望带来新的 Scaling Law。


近日,清华大学 NLP 实验室联合上海 AI Lab,清华大学电子系及 OpenBMB 社区提出一种新的结合过程奖励的强化学习方法—— PRIME(Process Reinforcement through IMplicit REwards),采用 PRIME 方法,研究人员不依赖任何蒸馏数据和模仿学习,仅用 8 张 A100,花费一万块钱左右,不到 10 天时间,就能高效训练出一个数学能力超过 GPT-4o、Llama-3.1-70B 的 7B 模型 Eurus-2-7B-PRIME。


具体而言,研究人员利用 Qwen2.5-Math-7B-Base 作为基座模型,训练出了新模型 Eurus-2-7B-PRIME ,并在美国 IMO 选拔考试 AIME 2024 上的准确率达到 26.7%,大幅超越 GPT-4o,Llama3.1-70B 和 Qwen2.5-Math-7B-Instruct,且仅使用了 Qwen Math 数据的 1/10。其中,强化学习方法 PRIME 为模型带来了 16.7% 的绝对提升,远超已知的任何开源方案。




该项目一经开源就在海外 AI 社区爆火,短短几天 Github 取得 400+ star。


未来,基于 PRIME 方法和更强的基座模型有潜力训练出接近 OpenAI o1 的模型。



_blog 链接:_https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f


_GitHub 链接:_https://github.com/PRIME-RL/PRIME


PRIME 方法介绍


长久以来,开源社区严重依赖数据驱动的模仿学习来增强模型推理能力,但这种方法的局限也显而易见——更强的推理能力需要更高质量的数据,但高质量数据总是稀缺,使得模仿和蒸馏难以持续。虽然 OpenAI o1 和 o3 的成功证明了强化学习有着更高的上限,但强化学习有着两个关键挑战:(1)如何获得精准且可扩展的密集奖励;(2)如何设计可以充分利用这些奖励的强化学习算法。


PRIME 算法从隐式过程奖励(implicit process reward)的思想出发解决这两个问题。隐式过程奖励模型可以仅在输出奖励模型(outcome reward model, ORM)的数据,即答案的最终对错上进行训练,而隐式地建模过程奖励,最终自动训练出一个过程奖励模型,这整个过程都有严格的理论保证。


_详细推导见:_https://huggingface.co/papers/2412.01981



基于隐式过程奖励模型的这种性质,研究人员指出将其应用于强化学习有三大优势:


  1. 过程奖励:隐式过程奖励模型能够为每个 token 提供价值估计,在提供过程奖励的同时无需训练额外的价值模型(value model)

  2. 可扩展性:隐式过程奖励模型只需结果标签即可在线更新。所以,我们可以结合策略模型采样与结果验证器来直接更新 PRM,有效缓解分布偏移与可扩展性问题。

  3. 简洁性:隐式过程奖励模型本质上就是一种语言模型。在实践中,研究人员发现可以直接用初始的策略模型初始化 PRM。


隐式过程奖励解决了 PRM 在大模型强化学习中怎么用,怎么训,怎么扩展的三大问题,甚至不需要训练额外的奖励模型就可以开始强化学习,易用性和可扩展性极佳。


具体的 PRIME 算法流程如下图所示,它是一种在线强化学习算法,能够将每个 token 的过程奖励无缝应用于强化学习流程中。



实验结果


研究人员详细比较了 PRIME 算法和基线方法


相比于仅用结果监督,PRIME 有着 2.5 倍的采样效率提升,在下游任务上也有着显著提升。




研究人员还验证了 PRM 在线更新的重要性,可以看到,在线的 PRM 更新要显著优于固定不更新的 PRM,这也证明了 PRIME 算法设计和合理性



此外,研究人员还额外收集数据,基于 Qwen2.5-Math-Instruct 训练了 SOTA 水平的 EurusPRM,能够在 Best-of-N 采样中达到开源领先水平



showcase 演示


Question (AIME 2024 试题,Claude-3.5-Sonnet 做错)



Answer



Question


Which number is larger? 9.11 or 9.9?


Answer



强化学习是连接已有智能体(大模型)和现实世界(世界模型,具身智能)的桥梁,以及将世界反馈内化为模型智能的路径,将在下一代人工智能的发展中起到重要作用。PRIME 算法创新性地将隐式过程奖励与强化学习结合,解决了大模型强化学习的奖励稀疏问题,有望推动大模型复杂推理能力的进一步提升。


该工作在海外 AI 社区受到了很大欢迎:



2025-01-13 15:336136

评论

发布
暂无评论

纯css实现:单行文本的打字机动画效果

南极一块修炼千年的大冰块

7月月更

三、HikariCP源码分析之获取连接流程三

阿白

数据库 源码解析 HikariCP 源代码 连接池

五、HikariCP源码分析之初始化分析二

阿白

数据库 源码解析 HikariCP 源代码 连接池

人社部公布“数据库运行管理员”成新职业,OceanBase参与制定职业标准

OceanBase 数据库

leetcode122. Best Time to Buy and Sell Stock II 买卖股票的最佳时机 II(简单)

okokabcd

LeetCode 数据结构与算法 贪心算法

四、HikariCP源码分析之初始化分析一

阿白

数据库 源码解析 HikariCP 源代码 连接池

怎么实现您的个人知识库?

Geek_da0866

不要再用if-else!

Jackpop

六、HikariConfig配置解析

阿白

数据库 源码解析 HikariCP 源代码 连接池

七、HikariConfig初始化分析

阿白

数据库 源码解析 HikariCP 源代码 连接池

数据安全建设

奔向架构师

数据资产 7月月更

九、HikariCP源码分析之ConcurrentBag二

阿白

数据库 源码解析 HikariCP 源代码 连接池

十一、HikariCP源码分析之HouseKeeper

阿白

数据库 源码解析 HikariCP 源代码 连接池

算力顶天地,存力纳乾坤:国家超级计算济南中心的一体两面

脑极体

Apache Doris 1.1 特性揭秘:Flink 实时写入如何兼顾高吞吐和低延时

SelectDB

数据库 flink 数据仓库 Doris 数仓

知识库对企业的意义

Baklib

Serverless实战——2分钟,教你用Serverless每天给女朋友自动发土味情话

Serverless Devs

#Serverless

八、HikariCP源码分析之ConcurrentBag一

阿白

数据库 源码解析 HikariCP 源代码 连接池

MIT TR50榜单公布 《麻省理工科技评论》评价毫末智行是AI自动驾驶界的颠覆势能

科技大数据

智能车

面向大数据存算分离场景的数据湖加速方案

Baidu AICLOUD

数据湖 对象存储 元数据 存算分离 层级namespace

高性能数据访问中间件 OBProxy(三):问题排查和服务运维

OceanBase 数据库

SQL 改写系列七:谓词移动

OceanBase 数据库

7 行代码搞崩溃 B 站,原因令人唏嘘!

Python猫

新型LaaS协议Elephant Swap给ePLATO提供可持续溢价空间

BlockChain先知

2022中国物流产业大会暨企业家高峰论坛在杭州举办!

联营汇聚

一、HikariCP源码分析之获取连接流程一

阿白

数据库 源码解析 HikariCP 源代码 连接池

二、HikariCP源码分析之获取连接流程二

阿白

数据库 源码解析 HikariCP 源代码 连接池

互联网基石:TCP/IP四层模型,由浅入深直击原理!

wljslmz

计算机网络 TCP/IP 网络技术 OSI模型 签约计划第三季

你想怎么使用 Serverless 函数计算?(评测赢好礼 )

Serverless Devs

活动回顾 | 大咖云集“开源安全治理模型和工具”线上研讨会

安势信息

开源安全 供应链攻击 SBOM SLSA 软件供应链安全

经验分享|编写简单易用的在线产品手册小妙招

Baklib

仅用 8 张显卡和一万块钱,清华团队用7B模型打败GPT-4o数学推理_AI&大模型_OpenBMB 社区_InfoQ精选文章