写点什么

谷歌联合哈佛大学发布最新研究,使用 NeRF 创建 360 度完整神经场景视频

  • 2021-12-16
  • 本文字数:1290 字

    阅读完需:约 4 分钟

谷歌联合哈佛大学发布最新研究,使用NeRF创建360度完整神经场景视频

Google Research 与哈佛大学最新的合作研究,提出了一种称为“Mip-NeRF 360”的新方法。该方法使用 NeRF(Neural Radiance Fields)创建 360 度完整神经场景(neural scene)的视频,进一步推动了 NeRF 适用于在任何环境中随意抽象,不再受限于桌面模型封闭室内场景


不同于大多数前期方法,Mip-NeRF 360 给定了对光线的解释方式,并通过建立关注区域边界降低了原本冗长的训练时间,实现可处理背景的扩展和天空这样的“非受限”场景。


新论文的标题为“Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields”,由 Google Research 高级研究科学家 Jon Barron 牵头完成的。


为深入理解该论文的技术突破,首先对基于 NeRF 的图像生成做一个基础的阐释。

什么是 NeRF?


NeRF 网络并非真正地去描述一个视频,而是使用对单张照片和视频各帧的多个视角拼接出场景,因此更类似于一种基于 AI 实现的完全 3D 虚拟环境。该场景从技术上看只存在于机器学习算法的隐空间(latent space),但可从中任意抽取出大量的视角和视频。


图1 多摄像头捕获点示意图(左图);NeRF获取各捕获点,并拼接出神经场景(右图)


给定一张照片,通过训练其中的信息,生成一个类似于传统 CGI 工作流中体素网格(Voxel grids)的矩阵。矩阵中为 3D 空间中的每个点赋予了一个值,形成可被访问的场景。


图2:体素矩阵示例,其中以三维空间存储像素信息。像素通常采用二维形式表示,例如JPEG文件的像素网格。图片来源:ResearchGate。


该方法在完成各照片间必要的间质空间计算后,通过“光线追踪”确定光照路径上每张照片的每个可能像素点,并对其分配一个颜色值和透明度值。如果没有指定透明度,那么神经矩阵可能是完全不透明的,也可能是完为空的。


NeRF 矩阵与基于 CGI 的三维坐标空间不同,但与体素网格类似,其中的“封闭”对象并不存在任何内部表示。例如,一个架子鼓对象在 CGI 中是可以拆开查看其内部的,但在 NeRF 中一旦将该对象的表面不透明度值设置为 1,那么这台架子鼓就会消失。

像素视角的扩展


Mip-NeRF 360 是对2021年3月发表的一项研究的进一步拓展。该研究提出的 Mip-NeRF 方法通过在 NeRF 中引入有效的抗锯齿,避免做过量的超采样(supersampling)。


NeRF 一般只计算单条像素路径,易于产生早期互联网图像格式和游戏系统中所特有的“锯齿感”。为消除锯齿感边缘,已有方法通常是对相邻像素进行采样,并给出平均表示。


针对传统 NeRF 仅对单条像素路径采样,Mip-NeRF 提出了一种类似宽光束手电筒的“锥形”汇集区,对相关相邻像素提供了充分的信息,形成细节改进的低代价抗锯齿方法。


图3 Mip-NeRF使用的“锥形”汇集区被切片成视锥(下图),并做进一步的模糊化处理,生成用于计算像素精度和锯齿的高斯空间。图片来源:https://www.youtube.com/watch?v=EpH175PY1A0


该方法显著改进了标准 NeRF 实现,如下图所示:


图4 发表于2021年3月的Mip-NeRF方法(右图)。它通过更全面和低代价的锯齿流水线而非对像素的模糊化处理,实现细节改进,避免边缘产生锯齿状。图片来源:https://jonbarron.info/mipnerf/

无界 NeRF


但 Mip-NeRF 依然存在三个尚未解决的问题。首先,要应用于天空这样的无界环境中,其中可能包含超远距离的对象。Mip-NeRF 360 通过对 Mip-NeRF 高斯空间应用Kalman扭曲解决了该问题。


第二,更大的场景需要更高的处理能力和更长的训练时间。为解决该问题,Mip-NeRF 360 使用小规模“提议”多层感知器(MLP,multi-layer perceptron)去“提炼”场景的几何形状。MLP 根据大规模标准 NeRF MLP 预测的几何形状,预先限定了当前形状范围,将训练速度提高了三倍。


第三,更大的场景往往会导致需解构几何体的离散化存在模糊不清的问题,进而导致输出游戏玩家可能非常熟知的“画面撕裂”伪影。Mip-NeRF 360 通过新建对 Mip-NeRF 射线间隔的正则化处理而解决了该问题。


图5 图右侧使用Mip-NeRF,难以对如此规模的场景进行界定,因此产生了不必要的伪影。图左侧使用了新的正则化处理,完全可优化消除这些干扰。


原文链接: Neural Rendering: NeRF Takes a Walk in the Fresh Air

2021-12-16 15:043471

评论

发布
暂无评论
发现更多内容

AI日课@20230413:Prompt Engineering 02 - 原则

无人之路

ChatGPT

本周参加两个SAP项目面试后的感想

SAP虾客

面试 SAP项目 行业经验

Unity 之 Post Processing后处理不同项目配置(UPR项目配置)

陈言必行

Unity 三周年连更

终于拿到了阿里技术专家分享的552页大型网站架构实战文档

Java 架构 网站架构

京东面试题:说说synchronized和volatile的区别

Java volatile JMM synchronized

硬核!阿里P8自爆春招面试核心手册,Github上获赞65.7K

Java java面试 Java八股文 Java面试题 Java面试八股文

2023-4-13 某SAP项目面试小记

SAP虾客

SAP EWM SAP Ariba SAP Workflow SAP PM

Java面向对象编程基础

timerring

Java

好用的pdf格式转换器:PDF to Word Document Converter 激活版

真大的脸盆

Mac PDF Mac 软件 PDF格式转换

Spring 事务及传播机制原理详解

Java spring 事务

2023最NB的JVM基础到调优笔记,光图文就超清晰,吃透阿里P6小case

Java你猿哥

Java JVM Java虚拟机 jvm调优

多线程&高并发(全网最新:面试题+导图+笔记)面试手稳心不慌

Java你猿哥

Java 多线程 面试题 高并发 多线程与高并发

用情景领导力帮助团队管理-1

搬砖的周狮傅

Java并行流:一次搞定多线程编程难题,让你的程序飞起来!

Java你猿哥

Java 多线程 SSM框架 java 并发

深度分析:SpringBoot中自定义starter实例与原理

Java你猿哥

spring Spring Boot SSM框架 Spring boot starter test

终于拿到了爆火全网的进一线大厂程序员必看的1700道java面试题

Java java面试 Java八股文 Java面试题 Java面试八股文

ES6中的Proxy

格斗家不爱在外太空沉思

JavaScript ES6 三周年连更

限时开源!阿里京东架构师出品亿级高并发系统设计手册

会踢球的程序源

Java 架构 后端 java架构师

【坚果派 - 坚果】OpenHarmony编译命令

坚果

OpenHarmony 三周年征文 三周年连更

我给大家免费公开五份阿里Java架构师学习手册!助力金三银四

Java你猿哥

Java 架构 算法 高并发 Java性能调优

面试官:类是如何加载的?

劲爆!阿里巴巴面试参考指南(嵩山版)开源,程序员面试必刷

Java 程序员 面试

鲲鹏DevKit原生开发,效率倍增使能极简开发

乌龟哥哥

鲲鹏 DevKit 三周年连更

霸榜Github三个月的「架构师成长手册」!成为架构师竟然也有捷径

Java你猿哥

Java 分布式 架构设计 架构师 SSM框架

Java的访问修饰符

Java你猿哥

Java oop SSM框架

一个强大的go生产力工具,极大的提高开发效率、缩短开发项目时间和人工成本

vison

微服务 gRPC Go 语言 gin 代码自动生成

SpringBoot中如何解决Redis的缓存穿透、缓存击穿、缓存雪崩?

带你浅谈下Quartz的简单使用

Java你猿哥

Java SSM框架 quartz

FastDFS收藏起来,现在开始用Minio吧

会踢球的程序源

Java fastdfs

MySQL索引15连问,你扛得住吗?

Java MySQL 数据库 索引

谷歌联合哈佛大学发布最新研究,使用NeRF创建360度完整神经场景视频_文化 & 方法_Martin Anderson_InfoQ精选文章