AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

营销部门投资 AI 前应思考的 3 个问题

  • 2017-01-22
  • 本文字数:1885 字

    阅读完需:约 6 分钟

人工智能(AI)的出现可能会令营销主管们骨碌着眼睛说“别又来了!”

正如他们所知,营销决策很多时候归结为一个猜谜游戏。营销自动化分析软件可以帮忙,但它们提供的测试和度量工具仅能产生事后见解。而元决策是:如何知道哪种营销技术将真正产生有效的结果?

人工智能技术可以提升人们的决策和预算能力。问题是,在哪里以及如何应用AI 技术。你肯定不想再次陷入到这样的猜谜游戏中,到底营销技术栈的哪个领域从AI 应用收益最大。这只是让猜谜工作从一个领域转移到另一个不同甚至更难理解的领域而已。突然间你就面临一个非常底层的基本问题。

假设已知了AI 可以帮助营销工作的方式范围,很自然的问题是:对于如何部署AI,该怎样决策? Bloomberg Beta 最近的机器智能形势对涉及8 个主分类和多个子分类的数百家公司做了一个榜单,发现在营销组织中部署AI 的方法有无数种。对于建立在高等数学基础上的一个技术部门,一个CMO 应该如何做出明智的决策?

关键是要有一个稳健的框架,用来评估可通过应用AI 技术得到提升的业务领域。

这里的建议可帮助评估在哪里应用AI。

1. 哪些业务流程最浪费预算?

营销人员对于 20 世纪早期 John Wanamaker 的浪费学说已经很熟悉了,他笑称,自己知道花在广告上的钱有一半是浪费了——只是不知道浪费的是哪一半。不幸的是,100 年过去了,在营销过程中依然有着巨大的浪费。可能数百万人访问你的网站,但只有几千人会输入他们的邮件地址并成为注册用户。由此,甚至更多的用户逐步减少,而无法转化为真正的商机:进入购买流程然后成为一名付费客户。只有千分之三的注册用户会最终转化为客户——比例是 250:1;另外的 249,就白白浪费了。如果你能花更少的时间在不太可能转化的用户上,而致力于那千分之三的最有前途用户,这就已经杜绝了很大一部分组织层面的浪费。

一般来讲,一个流程中浪费的百分比越高,机器就越有用;并且越靠近漏斗模型顶部,通常就越浪费。所以,在关注漏斗模型顶部的开销时,比如 banner 广告和邮件广告,AI 会特别有用。因此不要被那些成本很低但触达很多用户的营销活动吸引,比如电子邮件营销。这个成本意味着很低的目标,以及很少定制化的邮件,即使你只花了几分钱在每千次发送上:这损害了你的品牌形象,并且最终损害了邮件营销能力。甚至对于所发送的消息,使用 AI 生成更加个性化、更加让人印象深刻的内容也很有意义,可以在邮件广告营销中减少浪费。

另一方面,针对已有客户的营销往往是一个低浪费运营行为。与完全指望新客户相比,你至少有了相对较少的一些客户,而且与他们已经建立了关系。如果你的产品很好,并且你关注自己的客户,那这个领域可能并不怎么需要 AI。

AI 可以显著改善的高浪费领域,包括展示广告、网站流量、电子邮件营销和事件营销。

2. 什么会带来经济顺差?

经济顺差是一个简单的基本概念:做什么样的投资能获得比投资成本更高的收益?这对于很多营销决策而言是很难提前知道的。但是,通过在比任何人类能力都更大的范围内应用数据建模和预测分析,AI 可以帮助你。

举个例子,假设你正尝试通过填写网站上的表单来获得更多用户,以便提升网站访问到注册用户的转化率。传统的 web 营销方法是使用不同版本的表单做 A/B 测试,微调按钮、颜色、布局,然后重复,直到可以转化最多的站点访客的最佳优化版本。一个机器学习系统不局限于测试表单本身 —— 它还可以检查一个访客到达网站后的每一个可能路径,并给出当一名访客最终触达那条路径时哪些路径是最高转化率。事实上,一个 AI 系统可以为每一个访客给出最优路径,实时判断站点元素以提升成功转化的机会。

3. 拥有什么样的独特数据?

人工智能不是魔法,也不可能在真空中运作。为了效率,AI 系统需要数据 —— 大量的数据。数据集越独特,就越有可能从中挖掘出有趣和有效的见解。可以自问下:这个数据够有多好?是高质量的客户调查数据吗?还是有很多噪声的污染数据?那些有大量高质量数据的业务领域,就是你应该研究应用 AI 的地方。

如果某个领域(比如拿事件营销来说)没有大量相当干净的数据,最好还是让 AI 致力于其他领域。

总的来说,这三个问题能帮助你,让技术努力专注于应用 AI 到最易带来改变的地方。针对营销领域的 AI 技术很适合创造新的经济顺差机会和杜绝浪费,并且在有大量独特数据时实施效果最好。因此集中你的精力吧。

查看英文原文 http://venturebeat.com/2017/01/19/3-questions-marketers-should-ask-before-investing-in-ai/


感谢刘志勇对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-01-22 18:001730

评论

发布
暂无评论
发现更多内容

使用Travis CI为工程搭建一个持续集成服务。

梁龙先森

大前端 持续集成 2月春节不断更

经典面试题:在浏览器地址栏输入一个 URL 后回车,背后发生了什么

飞天小牛肉

程序员 面试 计算机网络 网络协议 2月春节不断更

如何用 4 个小时搭建一个新 “Clubhouse” ,引爆声音社交新风口

阿里云CloudImagine

App 音视频 WebRTC RTC clubhouse

第4周左右

林亚超

即拼商城模式开发

luluhulian

ARTS打卡 第30周

引花眠

微服务 ARTS 打卡计划

Redis Sentinel 源码:Redis的高可用模型分析

华为云开发者联盟

数据库 redis 高可用 框架 redis sentinel

大学寒假这样过,过完惊艳所有人,不只是你的宿友,还有千千万万个程序员同行们!!!

沉默王二

程序员

华为 Python网络自动化

艺博东

Python 网络

1.1w字,10图,轻松掌握 BlockingQueue 核心原理

马丁玩编程

阻塞队列 图解源码分析 JUC

「产品经理训练营」第四章作业

Sòrγy_じò ぴé

产品经理训练营 极客大学产品经理训练营 产品训练营

嘿,同学,你要的Java内存模型(JMM)来了

Simon郎

Java 大数据 JVM

阿里云第七代ECS云服务器: 整体算力提升40%

赵钰莹

大作业二

ray-arch

Elastic query string search

escray

Lucene Elastic Search 七日更 死磕Elasticsearch 60天通过Elastic认证考试 2月春节不断更

产品经理训练营 -- 第四周作业

Denny-xi

产品经理 产品经理训练营

作业4

瑾瑾呀

一看就懂的var、let、const三者区别

蛙人

JavaScript

第四章作业(一)

LouisN

从架构设计理念到集群部署,全面认识KubeEdge

华为云开发者联盟

架构 容器 云原生 集群 kubeedge

大作业一

ray-arch

图文详解:如何给女朋友解释什么是微服务?

浅羽技术

Java zookeeper 分布式 微服务 框架

第6周作业

Geek_mewu4t

京东App Swift 混编及组件化落地

京东科技开发者

swift 开发者

研发效能,productivity 还是 performance

李小腾

无责任畅想:云原生中间件的下一站

阿里巴巴云原生

容器 微服务 云原生 dubbo 中间件

我用 Python 分析了一波热卖年货,原来大家都在买这些东西?

JackTian

Python 数据分析 数据可视化 2月春节不断更 年货

编程范式( Programming paradigm )简介

引花眠

编程范式

MyChat,一个私有的“微信“

米凤君

Java 微信 Netty IM JavaFx

笔记本电脑电池显示4%可用(已接通电源),经过清灰又莫名奇妙的可以续航啦,很奇怪!

孙叫兽

电脑故障 电池

程序员防猝死指南

小白debug

程序员 职业 内存 打工人 Go 语言

营销部门投资AI前应思考的3个问题_语言 & 开发_AMAN NAIMAT_InfoQ精选文章