AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

营销部门投资 AI 前应思考的 3 个问题

  • 2017-01-22
  • 本文字数:1885 字

    阅读完需:约 6 分钟

人工智能(AI)的出现可能会令营销主管们骨碌着眼睛说“别又来了!”

正如他们所知,营销决策很多时候归结为一个猜谜游戏。营销自动化分析软件可以帮忙,但它们提供的测试和度量工具仅能产生事后见解。而元决策是:如何知道哪种营销技术将真正产生有效的结果?

人工智能技术可以提升人们的决策和预算能力。问题是,在哪里以及如何应用AI 技术。你肯定不想再次陷入到这样的猜谜游戏中,到底营销技术栈的哪个领域从AI 应用收益最大。这只是让猜谜工作从一个领域转移到另一个不同甚至更难理解的领域而已。突然间你就面临一个非常底层的基本问题。

假设已知了AI 可以帮助营销工作的方式范围,很自然的问题是:对于如何部署AI,该怎样决策? Bloomberg Beta 最近的机器智能形势对涉及8 个主分类和多个子分类的数百家公司做了一个榜单,发现在营销组织中部署AI 的方法有无数种。对于建立在高等数学基础上的一个技术部门,一个CMO 应该如何做出明智的决策?

关键是要有一个稳健的框架,用来评估可通过应用AI 技术得到提升的业务领域。

这里的建议可帮助评估在哪里应用AI。

1. 哪些业务流程最浪费预算?

营销人员对于 20 世纪早期 John Wanamaker 的浪费学说已经很熟悉了,他笑称,自己知道花在广告上的钱有一半是浪费了——只是不知道浪费的是哪一半。不幸的是,100 年过去了,在营销过程中依然有着巨大的浪费。可能数百万人访问你的网站,但只有几千人会输入他们的邮件地址并成为注册用户。由此,甚至更多的用户逐步减少,而无法转化为真正的商机:进入购买流程然后成为一名付费客户。只有千分之三的注册用户会最终转化为客户——比例是 250:1;另外的 249,就白白浪费了。如果你能花更少的时间在不太可能转化的用户上,而致力于那千分之三的最有前途用户,这就已经杜绝了很大一部分组织层面的浪费。

一般来讲,一个流程中浪费的百分比越高,机器就越有用;并且越靠近漏斗模型顶部,通常就越浪费。所以,在关注漏斗模型顶部的开销时,比如 banner 广告和邮件广告,AI 会特别有用。因此不要被那些成本很低但触达很多用户的营销活动吸引,比如电子邮件营销。这个成本意味着很低的目标,以及很少定制化的邮件,即使你只花了几分钱在每千次发送上:这损害了你的品牌形象,并且最终损害了邮件营销能力。甚至对于所发送的消息,使用 AI 生成更加个性化、更加让人印象深刻的内容也很有意义,可以在邮件广告营销中减少浪费。

另一方面,针对已有客户的营销往往是一个低浪费运营行为。与完全指望新客户相比,你至少有了相对较少的一些客户,而且与他们已经建立了关系。如果你的产品很好,并且你关注自己的客户,那这个领域可能并不怎么需要 AI。

AI 可以显著改善的高浪费领域,包括展示广告、网站流量、电子邮件营销和事件营销。

2. 什么会带来经济顺差?

经济顺差是一个简单的基本概念:做什么样的投资能获得比投资成本更高的收益?这对于很多营销决策而言是很难提前知道的。但是,通过在比任何人类能力都更大的范围内应用数据建模和预测分析,AI 可以帮助你。

举个例子,假设你正尝试通过填写网站上的表单来获得更多用户,以便提升网站访问到注册用户的转化率。传统的 web 营销方法是使用不同版本的表单做 A/B 测试,微调按钮、颜色、布局,然后重复,直到可以转化最多的站点访客的最佳优化版本。一个机器学习系统不局限于测试表单本身 —— 它还可以检查一个访客到达网站后的每一个可能路径,并给出当一名访客最终触达那条路径时哪些路径是最高转化率。事实上,一个 AI 系统可以为每一个访客给出最优路径,实时判断站点元素以提升成功转化的机会。

3. 拥有什么样的独特数据?

人工智能不是魔法,也不可能在真空中运作。为了效率,AI 系统需要数据 —— 大量的数据。数据集越独特,就越有可能从中挖掘出有趣和有效的见解。可以自问下:这个数据够有多好?是高质量的客户调查数据吗?还是有很多噪声的污染数据?那些有大量高质量数据的业务领域,就是你应该研究应用 AI 的地方。

如果某个领域(比如拿事件营销来说)没有大量相当干净的数据,最好还是让 AI 致力于其他领域。

总的来说,这三个问题能帮助你,让技术努力专注于应用 AI 到最易带来改变的地方。针对营销领域的 AI 技术很适合创造新的经济顺差机会和杜绝浪费,并且在有大量独特数据时实施效果最好。因此集中你的精力吧。

查看英文原文 http://venturebeat.com/2017/01/19/3-questions-marketers-should-ask-before-investing-in-ai/


感谢刘志勇对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-01-22 18:001741

评论

发布
暂无评论
发现更多内容

皮皮APP x 武汉市残疾人福利基金会 共建成长乐园

联营汇聚

使用 Apache APISIX serverless 能力快速拦截 Apache Log4j2 的高危漏洞

API7.ai 技术团队

Serverless log4j APISIX

性能基础之CPU、物理核、逻辑核概念与关系

zuozewei

Linux 性能测试 基础 签约计划第二季

TypeScript 之模块

冴羽

JavaScript typescript 翻译 前端 web前端

工业4.0时代:低代码的兴起,或将掀起制造业格局的变革

优秀

低代码 工业4.0

性能监控之Filebeat+Kafka+Logstash+Elasticsearch+Kibana 构建日志分析系统

zuozewei

ELK 性能监控 日志监控分析 签约计划第二季

性能监控之Telegraf+InfluxDB+Grafana+Python实现Oracle实时监控

zuozewei

数据库 oracle 性能监控 签约计划第二季

CODING 与悬镜安全达成战略合作,引领 DevOps 向 DevSecOps 创新模式升级

CODING DevOps

DevOps 数字化转型 DevSecOps

Apache Log4j2 远程代码执行 漏洞

try catch

数据情报在金融行业的探索系列

nexpose

数据分析 目标追踪 风险识别 数据分析预测 数据情报

实用机器学习笔记九:数据部分总结

打工人!

机器学习 算法 学习笔记 12月日更

即时通讯(IM)开源项目OpenIM本周版本发布- v1.0.7web端一键部署

OpenIM

性能工具之Java分析工具BTrace入门

zuozewei

Java 性能测试 性能分析 签约计划第二季

下周上海见!超越商业,创业邦100未来独角兽峰会议程抢先看

创业邦

iKuai与DNSPod合作,搞了一个大动作!

网络安全 DNS DNS劫持

XTransfer技术专家康康:从普通程序员到架构师的进化之路

XTransfer技术

程序员 创业心态 创业公司 跨境支付 XTransfer

性能分析之构建 Linux 操作系统分析决策树

zuozewei

Linux 性能测试 性能分析 签约计划第二季

性能分析之单条SQL查询案例分析(mysql)

zuozewei

MySQL 性能测试 性能分析 签约计划第二季

深度揭秘技术创新:全球首个知识增强千亿大模型是怎样炼成的?

百度大脑

人工智能

性能工具之常见性能工具一览

zuozewei

工具 性能测试 签约计划第二季

【Promise 源码学习】第十六篇 - 了解 co 库

Brave

源码 Promise 12月日更

Linux之ls命令

入门小站

Linux

性能监控之Sleuth+Zipkin 实现 SpringCloud 链路追踪

zuozewei

链路追踪 性能测试 SpringCloud 性能监控 签约计划第二季

Apache Log4j 2 报高危漏洞,CODING 联手腾讯安全护卫软件安全

CODING DevOps

Apache DevSecOps CODING Log4j 2 腾讯安全

5G与2021的双向奔赴

脑极体

Xcode13 适配之打印启动时间

CRMEB

Android单页应用如何在Activity与Fragment中共享状态

Changing Lin

12月日更

伙伴大会报名截止倒计时3天!

明道云

记录docker,k8s,oneops,.netcore搭建个人博客过程

哔啵哔啵

.net Docker k8s .net core oneops

时间紧资金少人才缺?8位产业专家带你破局AI智能化升级

百度大脑

人工智能

睁眼、耸肩、觉醒:人形机器人的吊诡与最终幻想

脑极体

营销部门投资AI前应思考的3个问题_语言 & 开发_AMAN NAIMAT_InfoQ精选文章