写点什么

Interactions Rank,挖掘用户的社交图谱

  • 2012-02-29
  • 本文字数:1296 字

    阅读完需:约 4 分钟

PageRank 是 Google 十年前提出的一种网页评级方法,也是 Google 用来衡量一个网站质量好坏的重要因素。利用 PageRank,Google 不断地改善搜索结果的排序,打造出目前最受欢迎的搜索引擎。相继搜索业的蓬勃发展,互联网领域又出现了一只新秀——社会网络 (SNS)。如今,Facebook 几乎代表了 SNS 的领航者。在 F8 大会上,来自 Facebook 的工程师介绍了关于 news feed 的算法,称之为 Edge rank。Edge rank 考虑了 SNS 网站用户之间的交互行为和交互的时效性,从而计算新鲜事出现权重,达到优化新鲜事排序、以及改变仅按时间排序的现状的目的。Edge rank 算法的好坏还需要时间来验证。

Interactions Rank 是 Google 的科学家最新提出的一种基于用户交互的社交图谱分析算法【1】,它定义用户与好友圈子之间的交互类别,并对不同的交互行为进行打分,找出与用户最亲密的好友圈子。

在 Interactions Rank 算法框架下,社交图谱用带权值的有向图来表示。图的节点代表用户,图的边代表用户之间的交互关系。考虑到用户之间的交互有主动和被动之分,图的边定义为带方向的,并且不同的方向有不同的权重。

从上面的计算公式中可以看出,Interactions Rank 主要考虑了以下三方面的因素:

  1. 交互频率: 用户与好友圈的交互频率越高,代表该好友圈相对用户的权重越大。
  2. 交互的时效性: 好友圈的权重随着时间不断变化。
  3. 交互的方向: 用户主动与好友交互要比被动交互对 Interactions Rank 产生的影响大。

总之,Interactions Rank 从用户的一组交互数据中计算而来,其中和分别表示好友圈子对该用户和该用户对好友圈子发起的互动行为。是当前时间,是发生交互行为的时间戳。可以调节时间因素对 Interactions Rank 的影响大小,可见,时间对 Interactions Rank 的影响是呈指数型衰减的。

好友推荐是 SNS 网站帮助用户拓展人脉关系的有效途径,Interactions Rank 为好友推荐提供了很好的依据。推荐引擎需要分析用户的社交关系,找到用户最可能认识的人。在拓展用户的好友圈子中,Interactions Rank 作为重要因素来衡量与用户发生交互的人之间的相关度,相关度越高,被推荐的概率越大。

Interactions Rank 的方法已被 Google 的电子邮件服务用来为用户推荐可能的收件人。当用户撰写一封电子邮件,在填写收件人名单时,推荐引擎会根据当前填写的名单为邮件撰写人推荐更多的收件人。其原理就是基于 Interactions Rank,对已填写的收件人群组进行扩充。该方法还被用来对用户的收件人列表进行纠错,对拼写错误的收件人地址提供修改建议。

【1】“Suggesting (More) Friends Using the Implicit Social Graph”, Maayan Roth, Tzvika Barenholz, Assaf Ben-David, David Deutscher, Guy Flysher, Avinatan Hassidim, llan Horn, Ari Leichtberg, Naty Leiser, Yossi Matias, Ron Merom, International Conference on Machine Learning (ICML), 2011.

InfoQ 相关内容:

文章:社会化推荐在人人网的应用

视频:社会化推荐算法在人人网的应用实践

作者简介:张叶银,毕业于中科院自动化所,目前担任人人网 Social Graph 算法工程师,主要负责 Social Graph 算法的研发,感兴趣的方向主要有大规模数据挖掘机器学习的应用及社会化计算。

2012-02-29 21:283601

评论

发布
暂无评论
发现更多内容

企业为什么需要MES,万界星空科技MES系统的解决方案

万界星空科技

数字化转型 工业互联网 制造业 mes 万界星空科技

一文了解AI长文本工具:马斯克打脸OpenAI,全球最大巨无霸模型Grok-1开源!

蓉蓉

openai

搭载联想小天个人智能体的AI PC亮相 PC从此变CP

科技热闻

国产化替代进程中金融行业的中间件

Onegun

信创 国产化

百度沈抖:智能,生成无限可能

百度Geek说

AI 百度智能云 企业号 4 月 PK 榜

凭证管理揭秘:Cookie-Session 与 JWT 方案的对决

Phoenix

安全架构 会话管理

智慧医院解决方案

菜根老谭

智慧医院

捷途山海T2携手坦克300 Hi4-T上市,消费者该如何选择?

极客天地

物资管理的挑战与机遇:利用技术提升效率与可持续性

天津汇柏科技有限公司

Penpad获Gate Labs以及Scroll联创Sandy的投资

西柚子

观测云产品更新 | 管理、容器、异常追踪、场景图表、DQL等

观测云

监控

火山引擎ByteHouse:OLAP如何支持超高QPS点查?

字节跳动数据平台

大数据 企业号2024年4月PK榜

如何延长LED显示屏的使用寿命

Dylan

环境 角色 LED显示屏 全彩LED显示屏 led显示屏厂家

大模型Chatbots评估新视角:结合定性与程序方法的实践探索

百度开发者中心

人工智能 大模型

魔搭×函数计算:实现大模型快速部署,加速AI应用落地

百度开发者中心

人工智能 大模型

重回铁王座!时隔5年!Quill 2.0 终于发布啦🎉

Kagol

前端 富文本编辑器

详解数仓的向量化执行引擎

华为云开发者联盟

数据库 华为云 华为云开发者联盟 华为云GaussDB(DWS) 企业号2024年4月PK榜

一次故障演练,十分钟自动搞定?

华为云开发者联盟

运维 华为云 企业号2024年4月PK榜 华为云开发和联盟

Appium控件交互策略:优化自动化测试效率的关键方法

霍格沃兹测试开发学社

OpenHarmony NAPI开发 主讲人:连志安

Laval小助手

大模型下B端前端代码辅助生成的思考与实践 | 得物技术

得物技术

JavaScript AI web前端 ChatGPT 企业号 4 月 PK 榜

Appium控件互动攻略:提升自动化测试效率的必备方法大揭秘!

测试人

软件测试 自动化测试 测试开发

Interactions Rank,挖掘用户的社交图谱_Google_张叶银_InfoQ精选文章