写点什么

大数据处理之如何确保断电不丢数据

  • 2013-11-05
  • 本文字数:5467 字

    阅读完需:约 18 分钟

今年 7、8 月份杭州实行拉闸限电时,导致阿里余杭机房的机器意外断电,造成 HDFS 集群上的部分数据丢失。

在 Hadoop 2.0.2-alpha 之前,HDFS 在机器断电或意外崩溃的情况下,有可能出现正在写的数据丢失的问题。而最近刚发布的 CDH4 中 HDFS 在 Client 端提供了 hsync() 的方法调用 ( HDFS-744 ),从而保证在机器崩溃或意外断电的情况下,数据不会丢失。这篇文件将围绕这个新的接口对其实现细节进行简单的分析,从而希望找出一种合理使用 hsync() 的策略,避免重要数据丢失。

HDFS 中 sync(),hflush() 和 hsync() 的差别

在 hsync() 之前,HDFS 就已经提供了 sync() 和 hflush() 的调用,单从方法的名称上看,很难分辨这三个方法之间的区别。咱们先从这几个方法之间的差别介绍起。

在 HDFS 中,调用 hflush() 会将 Client 端 buffer 中的存放数据更新到 Datanode 端,直到收到所有 Datanode 的 ack 响应时结束调用。这样可保证在 hflush() 调用结束时,所有的 Client 端都可以读到一致的数据。HDFS 中的 sync() 本质也是调用 hflush()。

hsync() 则是除了确保会将 Client 端 buffer 中的存放数据更新到 Datanode 端外,还会确保 Datanode 端的数据更新到物理磁盘上,这样在 hsync() 调用结束后,即使 Datanode 所在的机器意外断电,数据并不会因此丢失。而 hflush() 在机器意外断电的情况下却有可能丢失数据,因为 Client 端传给 Datanode 的数据可能存在于 Datanode 的 cache 中,并未持久化到磁盘上。下图描述了从 Client 发起一次写请求后,在 HDFS 中的数据包传递的流程。

hsync() 的实现本质

hsync() 执行时,实际上会在对应 Datanode 的机器上产生一个 fsync 的系统调用,从而将内存中的相关文件的数据更新到磁盘。

Client 端执行 hsync 时,Datanode 端会识别到 Client 发送过来的数据包中的 syncBlock_ 字段为 true,从而判定需要将内存中的数据更新到磁盘。此时会在 BlockReceiver.java 的 flushOrSync() 中执行如下语句:

复制代码
((FileOutputStream)cout).getChannel().force(true);

而 FileChannel 的 force(boolean metadata) 方法在 JDK 中,底层为于 FileDispatcherImpl.c 中调用 fsync 或 fdatasync。metadata 为 true 时执行 fsync,为 false 时执行 fdatasync。

复制代码
Java_sun_nio_ch_FileDispatcherImpl_force0(JNIEnv *env, jobject this,
jobject fdo, jboolean md)
{
jint fd = fdval(env, fdo);
int result = 0;
if (md == JNI_FALSE) {
result = fdatasync(fd);
} else {
result = fsync(fd);
}
return handle(env, result, "Force failed");
}

当 Datanode 将数据持久化到磁盘上后,会发 ack 响应给 Client 端。当收到所有 Datanode 的 ack 响应时,hsync() 的调用结束。

值得注意的是,fsync 或 fdatasync 本身是一个非常耗时的调用,因为磁盘的读写速度远低于内存的读写速度。在不调用 fsync 或 fdatasync 的情况下,数据可能保存在各级 cache 中。

最开始笔者在测 hsync() 的读写性能时,发现不同机器上测试结果 hsync() 耗时差别巨大,有的集群平均调用耗时为 4ms,而有的集群平均调用耗时则需 25ms。后来在公司各位大神的点拨下才意识到是跟 Linux 文件系统的机制有关。在这种情况下,只有一探 Linux 相关部分的源码才能解开心中的疑惑,下面这节就将从更底层的角度来解析与 hsync() 密切相关的系统调用 fsync 及 fdatasync 方法。

fsync 和 fdatasync 的大致实现过程

对 ext4 格式的文件系统来说,fsync 和 fdatasync 方法的实现代码位于 fs/ext4/fsync.c 这个文件中。在追加写文件的情况下,fsync 和 fdatasync 的流程几乎一致,因为对 HDFS 的写操作基本都是追加写,下面我们只讨论追加写文件下的情景。ext4 格式的文件系统中布局大致如下:

Group 0 Padding

Super Block

Group Descriptors

Reserved GDT Blocks Data

Data Block Bitmap

inode Bitmap

inode Table

Data Blocks

1024 bytes

1 block

many blocks

many blocks

1 block

1 block

many block

many more blocks

在我们追加写文件时,涉及到修改的有 DataBlock BitMap、inode BitMap、inode Table、Data Blocks。但从代码中来看,实际上对文件的追加会被合并成两次写 (这里是指逻辑意义上的两次写,实际在从系统 Cache 刷新到磁盘时,读写操作会被再次合并),第一次为写 DataBlock 和 DataBlock Bitmap,第二次为写 inode BitMap 和更新 inode BitMap 中的 inode。ext4 为了支持更大的容量,使用了 extend tree 来实现块映射。在追加文件的情况下,fsync 和 fdatasync 除了更新 inode 中的 extend tree 外,还会更新 inode 中文件大小,块计数这些 metadata。对 fsync 来说,还会修改 inode 中的文件修改时间、文件访问时间(在 mount 选项不含 noatime 的情况下)和 inode 修改时间。

写障碍和 Disk Cache 的影响

在了解了 fsync() 和 fdatasync() 方法会对文件系统进行的改动后,离找出之前为什么在不同集群上 hsync() 的调用平均耗时的原因仍还有一段距离。这时我发现了不同的磁盘挂载选项会影响到 fsync() 和 fdatasync() 的执行时间,进而确定是写障碍和 Disk Cache 在搞怪。下面这节就将分析写障碍和 Disk Cache 对 hsync() 方法调用耗时的影响。

由于市面上大部分的磁盘都是带 Disk Cache 的,这导致在不开启写障碍的情况下,机器意外断电可能会对其造成 metadata 的不一致。对 ext4 这种 journal 文件系统来说,journal 写入一个事务后,会对 metadata 进行更新,更新完成后会将该事务标记从未执行修改为完成。举个例子,加入我们要创建并写一个文件,那么在 journal 中可能会产生三个事务。那么创建并写一个文件的执行流程如下:

在磁盘没有 Disk Cache 的情况下,即时机器意外断电,那么重启自检时,可通过 journal 中最后事务的状态来对 metadata 进行重新执行修复或者废弃该事务。从而保证了 metadata 的一致性。但在磁盘有 Disk Cache 的情况下,IO 事件会当数据写到 Disk Cache 中就响应完成。虽然 journal 按上图的流程进行执行,但是执行完成后这些数据仍可能有部分并未持久化到磁盘上。假如在执行第 6 个步骤的时候机器意外断电,同时第 4 个步骤中的数据暂未更新到磁盘,而第 1,2,3,5 个步骤的数据已经同步到磁盘的话。这时机器重启自检时,由于第 5 个步骤中 journal 的执行状态为未完成,会重新执行第 6 个步骤一次。但第 6 个步骤对 metadata 的修改是建立在第 4 个步骤已经完成的基础之上的,由于第 4 个步骤并未持久化到磁盘,所以重新执行第 6 个步骤时会发生异常,造成 metadata 的错误。

Linux 中为了避免这一情况,可以在 ext4 的 mount 选项中加 barrier=1,data=ordered 开启写障碍,来确保数据持久化到磁盘的顺序。在写障碍前的数据会先于写障碍后的数据刷新到磁盘,Linux 会在 journal 的事务写到 Disk Cache 中后放置一个写障碍。这样 journal 的事务位于写障碍之前,而对应的 metadata 的修改数据位于写障碍之后。避免了 Disk Cache 中合并 IO 时,对读写操作进行重排序后,由于读写操作执行顺序的改变而造成意外断电后 metadata 无法修复的情况。

关闭写障碍,即 ext4 的 mount 选项为 barrier=0 时,除了有可能造成在机器断电或异常崩溃重启后 metadata 错误外,fsync 和 fdatasync 的调用还会在数据更新到 Disk Cache 时就返回,而非等到数据刷新到磁盘上后才结束调用。因为在不开写障碍的情况下,Linux 会将此时的磁盘当做没有 Disk Cache 的磁盘来处理,当数据只是更新到 Disk Cache,就会认为该 IO 操作已完成,这也正是前文中提到的不同集群上 hsync() 的平均调用时长差别巨大的原因。所以关闭写障碍的情况下,调用 fsync 或 fdatasync 并不能确保数据在机器断电或异常崩溃时不丢失。

Disk Cache 的存在可以提高磁盘每秒的吞吐量,通过重排序 IO,尽量将 IO 读写变成顺序读写提高速率,同时减少文件系统碎片。而通过开启写障碍,可避免意外断电情形下 metadata 异常,同时确保调用 fsync 或 fdatasync 时 Disk Cache 中的数据持久到磁盘。

开启 journal 的影响

除了写障碍和 Disk Cache 会影响到 hsync() 的调用时长外,Datanode 上文件系统有没有打开 journal 也是影响因素之一。关闭 journal 的情况下可以减少 hsync() 的调用时长。

在不开启 journal 的情况下,调用 fsync 或 fdatasync 主要是由 generic_file_fsync 这个方法来实现将数据刷新到磁盘。在追加写文件的情况下,不论是 fsync 还是 fdatasync,在 generic_file_fsync 这个方法中都会先更新 Data Block 数据,再更新 inode 数据。如果执行 fsync 或 fdatasync 的文件为新创建的文件,在不开启 journal 的情况下,还会在更新完文件的 inode 后,更新该文件的父结点的 Data Block 和 inode。

而开启 journal 的情况下,调用 fsync 或 fdatasync 会先写 Data Block,然后提交 journal 的事务。虽然调用 fsync 或 fdatasync 是指定对某个文件进行操作,但在 ext4 中,整个文件系统只有一个 journal 文件,提交 journal 的修改事务时会将整个文件系统的 metadata 的修改事务一并提交。在文件系统写入操作频繁时,这一步操作会比较耗时。

fsync 及 fdatasync 耗时测试

测试使用的代码如下:

代码中以追加的方式向一个已存在的文件写入 4k 数据,4k 刚好为内存页和磁盘块的大小。下面分别以几种模式来测试 fsync 和 fdatasync 的耗时。

复制代码
#define BLOCK_LEN 1024
static long long microseconds(void) {
struct timeval tv;
long long mst;
gettimeofday(&tv, NULL);
mst = ((long long)tv.tv_sec) * 1000000;
mst += tv.tv_usec;
return mst;
}
int main(void) {
int block = open("./block", O_WRONLY|O_APPEND, 0644);
long long block_start, block_end, fdatasync_time, fsync_time;
char block_buf[BLOCK_LEN];
int i = 0;
for(i = 0; i < BLOCK_LEN; i++){
block_buf[i] = i % 50;
}
if (write(block, block_buf, BLOCK_LEN) == -1) {
perror("write");
exit(1);
}
block_start = microseconds();
fdatasync(block);
block_end = microseconds();
fdatasync_time = block_end - block_start;
if (write(block, block_buf, BLOCK_LEN) == -1) {
perror("write");
exit(1);
}
block_start = microseconds();
fsync(block);
block_end = microseconds();
fsync_time = block_end - block_start;
printf("fdatasync spent: %lld, fsync spent: %lld\n",
fdatasync_time,
fsync_time);
close(block);
exit(0);
}

测试准备

  • 文件系统:ext4
  • 操作系统内核:Linux 2.6.18-164.el5
  • 硬盘型号:WDC WD1003FBYX-1 1V02,SCSI 接口
  • 通过 sdparm–set=WCE /dev/sdx 开启 Disk Write Cache,sdparm–clear=WCE /dev/sdx 关闭 Disk Write Cache
  • 通过 barrier=1,data=ordered 开启写障碍,barrier=0 关闭写障碍
  • 通过 tune4fs-O has_journal /dev/sdxx 开启 Journal,tune4fs-O ^has_journal /dev/sdxx 关闭 Journal

关闭 Disk Cache,关闭 Journal

类型

耗时(微秒)

fdatasync

8368

fsync

8320

Device

wrqm/s

w/s

wkB/s

avgrq-sz

avgqu-sz

await

svctm

%util

sdi

0.00

120.00

480.00

8.00

1.00

8.33

8.33

100.00

可以看到,iostat 为 8ms,对 inode、Data Block、inode Bitmap、DataBlock Bitmap 的数据更新合并为了一次写操作。

关闭 Disk Cache,开启 Journal

类型

耗时(微秒)

fdatasync

33534

fsync

33408

Device

wrqm/s

w/s

wkB/s

avgrq-sz

avgqu-sz

await

svctm

%util

sdi

37.00

74.00

444.00

11.95

1.22

16.15

13.32

99.90

通过使用 blktrace 跟踪对磁盘块的读写,发现此处写 journal 会比较耗时,下面的记录为 fsync 过程中对磁盘发送的写操作,已预处理掉了大部分不重要的信息,可以看到,后面三条记录都是 journal 的写操作(通过此处 kjournald 的进程 id 为 3001 来识别)。

0,0

13

1

0.000000000

8835

A

W

2855185 + 8 <- (8,129) 2855184

0,0

4

5

0.000313001

3001

A

W

973352281 + 8 <- (8,129) 973352280

0,0

4

1

0.000305325

3001

A

W

973352273 + 8 <- (8,129) 973352272

0,0

4

12

0.014780357

3001

A

WS

973352289 + 8 <- (8,129) 973352288

开启 Disk Cache,开启写障碍,开启 Journal

类型

耗时(微秒)

fdatasync

23759

fsync

25006

从结果可以看到,Disk Cache 的开启可以合并更多 IO,从而减少耗时。

值得注意的是,在开启 Disk Cache 时,iostat 的 await 是按照从内存写完到 Disk Cache 中来统计耗时,并非是按照写到磁盘上来计时,所以此种情况下 iostat 的 await 参数会比较小,并无参考意义。

小结

从这次测试结果可以看到,虽然 CDH4 提供了 hsync() 方法,但是若我们对每次写操作都执行 hsync(),会严重加剧磁盘的写延迟。通过一些策略,比方说定期执行 hsync() 或当存在于 Cache 中的数据达到一定数目时,执行 hsync() 会是更可行的方案,从而尽量减少机器意外断电所带来的影响。

附:术语解释

  • Hadoop: Apache 基金会的开源项目,用于海量数据存储与计算。
  • CDH4: Cloudera 公司在 Apache 社区发行版基础之上进行改进后的发行版,更稳定更适用于生产环境。
  • Namenode: Hadoop 的 HDFS 模块中管理所有文件元数据的组件。
  • Datanode: Hadoop 的 HDFS 模块中存储文件实际数据的组件。
  • HDFS Client: 这里指连接 HDFS 对其中文件进行读写操作的客户端。

作者简介

黄浩松,华南农业大学学生,现于阿里巴巴数据平台实习。微博 ID: @华农金中菊

2013-11-05 00:129538

评论

发布
暂无评论
发现更多内容

音乐NFT项目的技术架构

北京木奇移动技术有限公司

区块链技术 软件外包公司 音乐NFT

低代码平台终极拷问:NocoBase 像「乐高套装」,iVX 更像「3D 打印机」?

代码制造者

低代码开发 无代码平台

2025Q1大模型中标成绩出炉,百度智能云成为大模型“标王”

科技热闻

手把手教你用爬虫抓取1688商品详情和店铺全量商品API接口——从零到实战

代码忍者

1688API接口

区块链智能合约的安全性

北京木奇移动技术有限公司

智能合约 区块链技术 软件外包公司

京东中台化底层支撑框架技术分析及随想

京东科技开发者

诚邀加入天翼云用户体验官计划:您的洞察,重塑科技边界!

天翼云开发者社区

云计算

企业上云后,SRE认证为何成为企业“新宠”?

雅菲奥朗

SRE ITIL SRE培训 SRE认证

2025年GitHub Star增长最快的15个开源低代码项目

NocoBase

GitHub 开源 低代码 零代码 无代码

如何使用通义灵码辅助开发微信小程序

阿里云云效

微信小程序 云计算

【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践

阿里云大数据AI技术

人工智能 深度思考 大模型 模型蒸馏 DistilQwen2.5

虚拟表 + 高效写入 + 流计算优化,时序数据库 TDengine 3.3.6.0 重构核心体验

TDengine

数据库 tdengine 时序数据库

企业级软件定制:摒弃“银弹思维”,回归场景务实求解

TechLead Studio

软件研发

shopeeAPI 系列:商品列表接口接入与应用

tbapi

Shopee shopee商品列表接口

通义灵码 - HTML智能编码辅助AI工具

阿里云云效

人工智能 云计算

安全运营 | 第十期「纵深防护·极智运营」度安讲技术沙龙成功举办

百度安全

快速业务扩张下,App混合开发成必然选择

xuyinyin

Web Components实践:如何搭建一个框架无关的AI组件库

京东科技开发者

智能制造常见系统,ERP、MES、WMS、SCM、PLM,一文吃透!

积木链小链

添加DNS解析记录提示解析冲突是怎么回事?(国科云)

国科云

鸿蒙APP开发的技术架构

北京木奇移动技术有限公司

鸿蒙app 软件外包公司 APP外包公司

2025 中国人工智能教育大会召开,和鲸x智谱推出人工智能通识教育方案

ModelWhale

人工智能 高等教育 通识课 人工智能通识课

如何使用通义灵码辅助开发微信小程序

阿里巴巴云原生

CloudWeGo 2025 黑客松报名指南

字节跳动开源

字节跳动 黑客马拉松 CloudWeGo hertz Eino

手把手教你用爬虫技术抓取1688商品详情与实现关键字搜索API——实战干货分享

代码忍者

1688API接口

时序数据库 TDengine + Tableau,数据可视化一步到位!

TDengine

数据库 tdengine 时序数据库

时序数据库 TDengine Cloud 私有连接实战指南:4步实现数据安全传输与成本优化

TDengine

数据库 tdengine 时序数据库

计算机网络协议介绍

京东科技开发者

谁在买王兴兴的机器人?「宇树科技」百笔订单梳理、分析!

机器人头条

科技 大模型 人形机器人 具身智能

2025年智能ITSM产品推荐

云智慧AIOps社区

ITSM ITSM软件 工单管理 工单系统

AI口语练习App的技术架构

北京木奇移动技术有限公司

AI技术 软件外包公司 AI口语练习

大数据处理之如何确保断电不丢数据_阿里巴巴_黄浩松_InfoQ精选文章