写点什么

阿里提出联合预估算法 JUMP:点击率和停留时长预测效果最优

  • 2018-06-05
  • 本文字数:1453 字

    阅读完需:约 5 分钟

停留时长预估

对于停留时间的预估,我们借鉴了“生存分析”(Survival Analysis) 的思想,通过时间发生的时间去近似用户在一个内容上停留的时间;从概念上来说,停留时长被认为是“离开当前内容”这个事件的发生时间。如果我们记用户的停留时长的样本为 O,假设存在一个函数,将 O 映射到一个简单的分布 f 上:

这里 f 可能是一个高斯分布,伽马分布等。可以证明的是:

其中 F 表示累计概率分布(CDF),T 是对 O 的在线近似。那么有了上述公式后,我们就可以使用最大似然估计去预估样本的停留时间。我们分析了 RecSys15 数据及上的停留时间,原始分布如左下图,然而我们对停留时间取 log 后,得到了右下图。我们很高兴的发现在取 log 之后,停留时间是符合正态分布的。

于是我们取 g 为 log 函数,f 为正态分布函数,最终我们能得到似然函数:

学习建模

我们记一个用户的会话为一个行为序列:\(s_k=\{(i_j,\log \tau _j,\delta _j)\},j=1,2,\cdots ,k\)。其中 i 表示第 j 个点击的商品,\(\tau _j\) 表示停留时间,而\(\delta _j\) 是一个 bool 类型,表示是否是会话的最后一个商品(或者停留时间过长)。我们假设样本是从一个分布 P(S) 中采样出来,那么可以将分布分解为 2 项的积。

其中前一项表示点击率的似然,后一项表示停留时间的似然;\(s_{k-1}\) 表示会话中第 k 次点击前的行为。为了从会话的行为中抽取更多的有效信息,我们提出了一种三层 RNN 模型去编码。

Attention Layer: 我们设计注意力机制主要目的是去除会话中的噪音,保留真正有效的信息。表示 fast-slow 层的输出,a 对应 attention 的权重,对应的计算方法如下面公式:

Fast-Slow Layer: fast-slow 层提出了一种新奇的 RNN 网络。当我们处理第 j 个输入\((i_j,\log \tau _j,\delta _j)\) 的时候,会进入一个 F-S 处理单元,其中包括一个慢元子和一个快元子序列,慢元子会记忆更多长期的记忆,而快元子会更多的获取当前的信息。F-S 处理单元如下图所示:

Embedding Layer: 网络的最底层是一个 embedding 层,该层将一个二元组\((i_j,\log \tau _j)\) 映射到一个向量上,我们使用 batch-normalizing 对输入进行标准化:

实验

为了验证算法的性能,我们将 JUMP 算法对比了主流的基于会话的预估算法,验证在点击率预估和停留时长预估上的效果。对比的算法包括 GRU、IGRU、NARM、DTGRU,RMTP、ATRP、NSR,使用的数据集是 RecSys15、CIKM16 和 REDDIT。

点击率预估的结果如下表所示,我们可以看到在全部数据集上,JUMP 算法都能超越其他算法,取得最好的 Recall、MRR 和 NDCG 指标。

同时我们观察了 embedding 维度对 recall 指标的影响,结果如下图。我们可以到看随着 embedding 维度的提升,recall 指标都能得到一定的上升,但是基本都在 100 维左右达到最高;其次,我们仍然可以发现,JUMP 算法取得的效果是优于其他算法的,蓝色曲线总是在其他曲线之上。

除了点击率外,我们观察了在时间预估这个任务上的效果,结果如下表所示。对比 ATRP、RMTP 和 NSR 算法,JUMP 能明显提升预估的准度。

总结

本文提出了一种新奇的算法 JUMP,同时预估一个会话中的点击率和停留时间。主要有 3 点重要贡献:

  1. 使用生存分析的方法来建模用户的停留时间,建立在可靠的数据理论基础上;
  2. 提出了一种三层的 RNN 结构,基于注意力机制能提升模型的鲁棒性,降低噪音的影响;
  3. 使用了一种全新设计的 fast-slow 结构,加强对短会话的学习能力。大量实验验证了算法的有效性,在多个公开数据集上的结果,对比其他的算法都有大幅提升。

论文全文链接:

http://www.cs.zju.edu.cn/people/qianhui/pub/Zhou18.pdf

2018-06-05 17:5410138

评论

发布
暂无评论
发现更多内容

自定义View:如何实现双击点放大图片控件

Changing Lin

11月日更

恒源云(GPUSHARE)_云GPU服务器如何使用 TensorBoard?

恒源云

深度学习

NodeJs 深入浅出之旅:V8 内存分配🧙‍♂️

空城机

大前端 Node 11月日更

你现在可以在元宇宙里 “打工”了!

CECBC

新能源汽车补贴没了,行业还能快速发展吗?

石云升

学习笔记 新能源汽车 11月日更

中央银行、不平等和新技术:使用分布式账本、可编程合约和密码学的蓝图

CECBC

全能文件恢复软件推荐

淋雨

数据恢复

【云图说】DRS数据对比——带您随时观测数据一致性

华为云数据库小助手

GaussDB 华为云数据库 华为云DRS

直接破防了,阿里大咖DDD(领域驱动设计)不破不立,GitHub直接霸榜,今天share给大家~

编程 程序员 领域驱动

在线假单词随机生成器

入门小站

工具

(文末福利)云上论剑,谈谈如何构建新的数据系统技术体系

Zilliz

数据库

CODING Compass —— 打造行云流水般的软件工厂

CODING DevOps

DevOps 研发管理工具 流程化

1 分钟学会 30 种编程语言

AlwaysBeta

jodconverter实现在线预览

小鲍侃java

11月日更

Python Qt GUI设计:信号与槽的使用方法(基础篇—7)

不脱发的程序猿

Python qt PyQt GUI

一个基于PoS共识算法的区块链案例

Regan Yue

区块链 共识算法 11月日更 细讲区块链

架构设计

AHUI

「架构实战营」

你不知道的开源分布式存储系统 Alluxio 源码完整解析(上篇)

腾源会

大数据 开源 数据湖

数据同步:教你如何实时把数据从 MySQL 同步到 OceanBase

OceanBase 数据库

数据库 开源 oceanbase 分布式,

Forrester发布「2021年低代码平台中国市场现状分析报告」,钉钉宜搭入选

一只大光圈

低代码 数字化转型 低代码开发 低代码平台 钉钉宜搭

何止一个惨字形容,水滴Java面试一轮游,壮烈了,问啥啥不会,数据库血崩,我该怎么办?

Java 编程 程序员 面试

监管打压加码!虚拟货币挖矿再遭围堵 “漏网之鱼”当休

CECBC

【LeetCode】重新排序得到 2 的幂Java题解

Albert

算法 LeetCode 11月日更

勒索软件即服务与IAB产业浅析

腾讯安全云鼎实验室

安全攻防 勒索病毒

gitlab registry占用存储过大问题解决

ilinux

华为初面+综合面试(Java技术面)附上面试题,share给大家~

Java 编程 程序员 面试

浏览器的几种防护策略

网络安全学海

网络安全 信息安全 渗透测试 WEB安全 安全漏洞

linux下清理系统缓存并释放内存

入门小站

Linux

一起听、一起看、一起唱掀起Z世代青年社交浪潮

声网

人工智能 算法 音视频

识别AI换脸!百度这项技术夺冠了!

百度大脑

人工智能 百度

赢在2022,面试官常问的软件测试面试题总结

六十七点五

软件测试 面试题 自动化测试 经验总结 测试工程师

阿里提出联合预估算法JUMP:点击率和停留时长预测效果最优_阿里巴巴_周腾飞_InfoQ精选文章