写点什么

微软人工智能又一里程碑:微软中 - 英机器翻译水平可“与人类媲美”

  • 2018-03-15
  • 本文字数:3769 字

    阅读完需:约 12 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

继在语音识别机器阅读领域取得的“过人”成绩,由微软亚洲研究院与雷德蒙研究院的研究人员组成的团队今天宣布,其研发的机器翻译系统在通用新闻报道测试集 newstest2017的中 - 英测试集上,达到了可与人工翻译媲美的水平。这是首个在新闻报道的翻译质量和准确率上可以比肩人工翻译的翻译系统

newstest2017 新闻报道测试集由产业界和学术界的合作伙伴共同开发,并于去年秋天在 WMT17 大会上发布。为了确保翻译结果准确且达到人类的翻译水平,微软研究团队邀请了双语语言顾问将微软的翻译结果与两个独立的人工翻译结果进行了比较评估。

微软技术院士,负责微软语音、自然语言和机器翻译工作的黄学东称,这是对自然语言处理领域最具挑战性任务的一项重大突破。“在机器翻译方面达到与人类相同的水平是所有人的梦想,我们没有想到这么快就能实现。”他表示,“消除语言障碍,帮助人们更好地沟通,这非常有意义,值得我们多年来为此付出的努力。”

微软技术院士黄学东

机器翻译是科研人员攻坚了数十年的研究领域,曾经很多人都认为机器翻译根本不可能达到人类翻译的水平。虽然此次突破意义非凡,但研究人员也提醒大家,这并不代表人类已经完全解决了机器翻译的问题,只能说明我们离终极目标又更近了一步微软亚洲研究院副院长、自然语言计算组负责人周明表示,在WMT17 测试集上的翻译结果达到人类水平很鼓舞人心,但仍有很多挑战需要我们解决,比如在实时的新闻报道上测试系统等。

微软机器翻译团队研究经理Arul Menezes 表示,团队想要证明的是:当一种语言对(比如中- 英)拥有较多的训练数据,且测试集中包含的是常见的大众类新闻词汇时,那么在人工智能技术的加持下机器翻译系统的表现可以与人类媲美。

跨时区跨领域合作,四大技术为创新加持

虽然学术界和产业界的科研人员致力于机器翻译研究很多年,但近两年深度神经网络的使用让机器翻译的表现取得了很多实质性突破,翻译结果相较于以往的统计机器翻译结果更加自然流畅。为了能够取得中- 英翻译的里程碑式突破,来自微软亚洲研究院和雷德蒙研究院的三个研究组,进行了跨越中美时区、跨越研究领域的联合创新

其中,微软亚洲研究院机器学习组将他们的最新研究成果——对偶学习(Dual Learning和推敲网络(Deliberation Networks)应用在了此次取得突破的机器翻译系统中微软亚洲研究院副院长、机器学习组负责人刘铁岩介绍道,“这两个技术的研究灵感其实都来自于我们人类的做事方式。”对偶学习利用的是人工智能任务的天然对称性。当我们将其应用在机器翻译上时,效果就好像是通过自动校对来进行学习——当我们把训练集中的一个中文句子翻译成英文之后,系统会将相应的英文结果再翻译回中文,并与原始的中文句子进行比对,进而从这个比对结果中学习有用的反馈信息,对机器翻译模型进行修正。而推敲网络则类似于人们写文章时不断推敲、修改的过程。通过多轮翻译,不断地检查、完善翻译的结果,从而使翻译的质量得到大幅提升。对偶学习和推敲网络的工作发表在NIPS、ICML、AAAI、IJCAI 等人工智能的全球顶级会议上,并且已被其他学者推广到机器翻译以外的研究领域。

微软亚洲研究院副院长、机器学习组负责人刘铁岩

周明带领的自然语言计算组多年来一直致力于攻克机器翻译,这一自然语言处理领域最具挑战性的研究任务。周明表示,“由于翻译没有唯一的标准答案,它更像是一种艺术,因此需要更加复杂的算法和系统去应对。”自然语言计算组基于之前的研究积累,在此次的系统模型中增加了另外两项新技术:联合训练(Joint Training)和一致性规范(Agreement Regularization),以提高翻译的准确性。联合训练可以理解为用迭代的方式去改进翻译系统,用中英翻译的句子对去补充反向翻译系统的训练数据集,同样的过程也可以反向进行。一致性规范则让翻译可以从左到右进行,也可以从右到左进行,最终让两个过程生成一致的翻译结果。

微软亚洲研究院副院长、自然语言计算组负责人周明

可以说,两个研究组分别将各自所在领域的积累与最新发现应用在了此次的机器翻译系统中,从不同角度切入,让翻译质量大幅提升。在项目合作过程中,他们每周都会与雷德蒙总部的团队开会讨论,确保技术可以无缝融合,系统可以快速迭代。

没有“正确的”翻译结果

newstest2017**** 新闻报道测试集包括约 2000 个句子,由专业人员从在线报纸样本翻译而来。微软团队对测试集进行了多轮评估,每次评估会随机挑选数百个句子翻译。为了验证微软的机器翻译是否与人类的翻译同样出色,微软没有停留在测试集本身的要求,而是从外部聘请了一群双语语言顾问,将微软的翻译结果与人工翻译进行比较。

验证过程之复杂也从另一个侧面体现了机器翻译要做到准确所面临的复杂性。对于语音识别等其它人工智能任务来说,判断系统的表现是否可与人类媲美相当简单,因为理想结果对人和机器来说完全相同,研究人员也将这种任务称为模式识别任务。

然而,机器翻译却是另一种类型的人工智能任务,即使是两位专业的翻译人员对于完全相同的句子也会有略微不同的翻译,而且两个人的翻译都不是错的。那是因为表达同一个句子的“正确的”方法不止一种。 周明表示:“这也是为什么机器翻译比纯粹的模式识别任务复杂得多,人们可能用不同的词语来表达完全相同的意思,但未必能准确判断哪一个更好。”

复杂性让机器翻译成为一个极有挑战性的问题,但也是一个极有意义的问题。刘铁岩认为,我们不知道哪一天机器翻译系统才能在翻译任何语言、任何类型的文本时,都能在“信、达、雅”等多个维度上达到专业翻译人员的水准。不过,他对技术的进展表示乐观,因为每年微软的研究团队以及整个学术界都会发明大量的新技术、新模型和新算法,“我们可以预测的是,新技术的应用一定会让机器翻译的结果日臻完善。”

研究团队还表示,此次技术突破将被应用到微软的商用多语言翻译系统产品中,从而帮助其它语言或词汇更复杂、更专业的文本实现更准确、更地道的翻译。此外,这些新技术还可以被应用在机器翻译之外的其他领域,催生更多人工智能技术和应用的突破

延伸阅读:

对偶学习(Dual Learning):对偶学习的发现是由于现实中有意义、有实用价值的人工智能任务往往会成对出现,两个任务可以互相反馈,从而训练出更好的深度学习模型。例如,在翻译领域,我们关心从英文翻译到中文,也同样关心从中文翻译回英文;在语音领域,我们既关心语音识别的问题,也关心语音合成的问题;在图像领域,图像识别与图像生成也是成对出现。此外,在对话引擎、搜索引擎等场景中都有对偶任务。

一方面,由于存在特殊的对偶结构,两个任务可以互相提供反馈信息,而这些反馈信息可以用来训练深度学习模型。也就是说,即便没有人为标注的数据,有了对偶结构也可以做深度学习。另一方面,两个对偶任务可以互相充当对方的环境,这样就不必与真实的环境做交互,两个对偶任务之间的交互就可以产生有效的反馈信号。因此,充分地利用对偶结构,就有望解决深度学习和增强学习的瓶颈——训练数据从哪里来、与环境的交互怎么持续进行等问题

论文地址: https://papers.nips.cc/paper/6469-dual-learning-for-machine-translation.pdf

对偶无监督学习框架

推敲网络(Deliberation Networks)“推敲”二字可以认为是来源于人类阅读、写文章以及做其他任务时候的一种行为方式,即任务完成之后,并不当即终止,而是会反复推敲。微软亚洲研究院机器学习组将这个过程沿用到了机器学习中。推敲网络具有两段解码器,其中第一阶段解码器用于解码生成原始序列,第二阶段解码器通过推敲的过程打磨和润色原始语句。后者了解全局信息,在机器翻译中看,它可以基于第一阶段生成的语句,产生更好的翻译结果。

论文地址: https://www.microsoft.com/en-us/research/publication/deliberation-networks-sequence-generation-beyond-one-pass-decoding/

推敲网络的解码过程

联合训练(Joint Training):这个方法可以认为是从源语言到目标语言翻译(Source to Target)的学习与从目标语言到源语言翻译(Target to Source)的学习的结合。中英翻译和英中翻译都使用初始并行数据来训练,在每次训练的迭代过程中,中英翻译系统将中文句子翻译成英文句子,从而获得新的句对,而该句对又可以反过来补充到英中翻译系统的数据集中。同理,这个过程也可以反向进行。这样双向融合不仅使得两个系统的训练数据集大大增加,而且准确率也大幅提高

论文地址: https://arxiv.org/pdf/1803.00353.pdf

联合训练:从源语言到目标语言翻译(Source to Target)P(y|x) 与从目标语言到源语言翻译(Target to Source)P(x|y)

一致性规范(Agreement Regularization):翻译结果可以从左到右按顺序产生,也可以从右到左进行生成。该规范对从左到右和从右到左的翻译结果进行约束。如果这两个过程生成的翻译结果一样,一般而言比结果不一样的翻译更加可信。这个约束,应用于神经机器翻译训练过程中,以鼓励系统基于这两个相反的过程生成一致的翻译结果

一致性规范:从左到右和从右到左

相关资料:

2018-03-15 19:005825

评论

发布
暂无评论
发现更多内容

vue番茄钟&electron打包

空城机

Electron vue cli 5月月更

一、KVM虚拟化的功能特性

穿过生命散发芬芳

kvm 5月月更

两届获奖选手 手把手教你如何征战华为软件精英挑战赛

科技热闻

netty系列之:在netty中使用UDP协议请求DNS服务器

程序那些事

Java Netty 程序那些事 5月月更

喜报|海泰方圆成功入选中国档案学会单位会员

电子信息发烧客

平行云CEO 李岩:CloudXR ,开启通往元宇宙的通道

阿里云弹性计算

XR 元宇宙

阿里云云原生一体化数仓入选 2022数博会“十佳大数据案例”

阿里云大数据AI技术

数据挖掘 大数据 分布式计算 数据处理 MaxCompute

相较国外代码托管平台 gitlab,咱们中国自己的代码托管平台有哪些优势?

阿里云云效

云计算 阿里云 代码管理 代码托管 代码安全

Python图像处理丨图像缩放、旋转、翻转与图像平移

华为云开发者联盟

Python 图像平移 图像缩放

英特尔以“整合论”谋篇布局,加码数据中心

科技之家

【直播回顾】参与文档贡献,开启OpenHarmony社区贡献

OpenHarmony开发者社区

OpenHarmony

Java开发规范(一)

DC.夜猫

开发 规范 开发规范 java

10分钟弄懂云原生网络功能,快来瞧瞧!

VoltDB

云原生 云原生网络 网络功能

如何实现文档协作共享?

小炮

Hoo联合SwapAll发布赏金活动 用户可体验“救援任务”瓜分赏金奖池

区块链前沿News

SAP Hoo

JVM 线上问题定位实战(CPU 飙升)

Ayue、

JVM

企业智能化转型meetup回顾|开源BI & AI助力企业转型之旅三阶段!

第四范式开发者社区

人工智能 开源 企业 大数据平台 智能化转型

明源云天际PaaS平台,构建零代码、低代码在线协同开发实践

科技热闻

基于信息检索和深度学习结合的单元测试用例断言自动生成

华为云开发者联盟

深度学习 单元测试 信息检索

中兴通讯加入龙蜥社区,共建ICT全场景开源生态

OpenAnolis小助手

开源 生态 龙蜥社区 CLA 中兴通讯

第二章 启航

Geek_古藤模根

图数据库实战 gremlin 入门 Gremlin

一个轻量的数据库数据告警器

山河已无恙

Java 数据监控

实践GoF的设计模式:工厂方法模式

华为云开发者联盟

设计模式 工厂方法模式

图分析的22种算法与图形理解

情报分析师

数据分析 知识图谱 图算法 图论 知识结构

直播预告 | PolarDB-X 动手实践系列——基于 Prometheus + Grafana 的 PolarDB-X 监控体系

阿里云数据库开源

数据库 阿里云 开源 PolarDB-X 教学

这道静态变量题,我居然考了0分

华为云开发者联盟

Java 静态变量 Java static

漫画 | 新一代软件架构会影响到谁?

阿里巴巴云原生

阿里云 云原生 事件总线 EventBridge

OpenClusterManagement 开源之夏 2022 来了

阿里巴巴云原生

阿里云 云原生 开源之夏

2022Gartner容器预测:2025年85%的企业将使用容器管理服务

York

容器 云原生 数字化转型

微软人工智能又一里程碑:微软中-英机器翻译水平可“与人类媲美”_微软_微软亚洲研究院_InfoQ精选文章