AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

微服务监控:2018 年预测

  • 2017-12-03
  • 本文字数:2216 字

    阅读完需:约 7 分钟

过去数年间,我们探讨了微服务实现和部署中所面临的多个挑战。一个贯穿始终的问题,是如何监控由微服务构建的分布式应用中的情况。随着复杂性的不断增加,以及协同(choreographies)理念日益重要,微服务监控变得尤为紧迫。例如,在 2017 年初 InfoQ 举办的一次“微服务实践的虚拟研讨会”中,在被问及分别列出微服务上前五位应做的和不应做的事项时,研讨会参与嘉宾之一的 Martin Verburg 说:

在构建整个系统之前,先构建 3 个互相交互的服务原型,找出实现非功能需求的解决方案,比如安全问题、服务发现、健康监控、回压、失效备援,等等。

在被问及是否可推荐一些专用于微服务开发的语言或技术时,研讨会参与嘉宾之一的 Adam Bien 说:

Java 已经诞生 20 多年了,它是一门成熟的开发语言,具有强大的工具和监控能力。Java 在一开始就融入了微服务概念,比如 Jini/JXTA 框架,它们与 No-SQL 数据库(比如 JavaSpaces)混在一起。可以说,Java 超前了 15 年,那个时候市场还没有做好使用这些技术的准备。不过,从 1999 年以来的那些技术在今天仍然适用。我们并没有重新造轮子。

在过去的一年甚至更长的时间中,我们总是习惯于将 Linux 容器和微服务等同看待,这影响到了对监控的考量。最近, RisingStack 的 CTO Péter Márton 撰文对明年的发展情况给出了一些意见。文中首先阐明了一些基本理念:

目前市面上的 APM(应用性能监控,Application Performance Monitoring)解决方案严重地依赖于不同层级的观测(Instrumentation),例如 NewRelic 和 Dynatrace 等。这些产品必须安装软件厂商特定的代理才能采集度量。代理采集应用的各种度量,其中包括一些底层语言特定的度量(例如垃圾回收行为等),以及一些软件库特定的度量(例如 RPC、数据库延迟等)。

Péter 进而指出,应注意不要过于快速地推进 APM 路线,甚至是深陷其中。文中给出了如下预测:

使用厂商特定的代理会导致一个问题,即一旦开发人员同时使用多种监控解决方案和代理,就会丢失当前 APM 解决方案的部分特性。多代理通常意味着对同一构件代码(code picec)做出多种观测,进而导致不必要的性能开销、虚假的度量乃至软件缺陷。我认为,使用厂商特定代理的趋势在未来将会发生改变,APM 软件提供商将会共同努力提出一种开放的观测标准。未来将会是一个独立于厂商的时代,所有价值将来自于不同的后端和 UI 特性。

随后 Péter 笔锋一转,开始探讨分布式追踪(distributed tracing)的相关问题。在他看来,容器和微服务技术的涌现,驱使开发人员为实现监控和调试而提升可观测性(Observability)方法。InfoQ 曾探讨过分布式追踪技术,例如对Zipkin 的介绍,以及近期 Cindy Sridharan 对可观测性的介绍

日志、指标和请求跟踪是可观测性的基础。日志为数据(如指标)提供额外的上下文。不过,日志对性能的影响也很大。相比之下,指标的开销是不变的,而且有利于预警。总而言之,日志和指标可以为观察单独的系统提供方便,但是对于穿过多个系统的请求,很难提供其生命周期的信息。跟踪提供了跟踪在各个系统之间传递的请求的能力。

Péter 同意上述的观点。在探讨 OpenTracing 技术及其重要性之前,文中给出了一些例子,说明了 OpenTracing 意在提供:

(……)标准的、独立于厂商的分布式追踪观测接口。Opentracing 提供标准的 API,用于收集代码观测指标,并传递给各种追踪后端。它可以做到,只需收集一次代码观测指标,完全没有问题地用于各种追踪后端。

他给出了一些将 OpenTracing 用于原生技术的例子,特别是从 Node.js 开发的角度。他强调指出,也可以说是发出了一个请求:“我希望将来会有越来越多的标准化观测解决方案。也希望有一天,所有的 APM 软件厂商能共同努力,给出最好的独立于厂商的代理

文章的更多内容是关于 OpenTracing 的。文中介绍了 OpenTracing 是如何与 ElasticSearch 和 Prometheus 一起工作的,并给出一些例子和展示图。正如 Péter 所指出的,这些例子显示了 OpenTracing 在架构拓扑可视化上的强大功能,有助于了解问题发生问题时的相关情况。文中进一步引用了 RisingStack 的一个 Node.js 上的度量追踪项目。据 Péter 介绍,该项目可用于:

(……)基于这些度量信息,对整体拓扑结果做逆向工程,并可视化各服务间的依赖关系。我们可以从这些度量中获得微服务架构中应用和数据库间通量和延迟的情况。

在 2016 年早期,我们曾就“对大规模容器进行监控所面临的挑战”访谈了部分人士。对于如何理解和使用追踪所采集数据方面的问题,Dynatrace 的首席技术战略师 Alois Reitbauer 给出了以下观点:

(……)每个人都必须了解这些监控数据。这也是为什么我们花费了大量时间创建自解释的信息图表,让每个人都能够其中的意义。另一个关键需求是对异常情况的检测。由于系统的巨大规模,没有任何人能够做到手动查看所有数字。因此,监控系统必须了解什么是正常的行为,并当系统的行为出现异常时进行提示。最后一个方面在于具备上下文的语义信息。举例来说,监控系统需要“理解”指标所代表的意义,以及它与其他指标的关联。我们需要了解整个应用中的所有依赖,将这此信息用于问题的分析。

在文章最后,Péter 做了总结,并给出如下预测:

要使微服务的监控和可观测性更上一层楼,并步入下一代 APM 工具时代,需要给出 OpenTracing 那样的独立于厂商的开放观测标准。这一新标准应得到 APM 软件厂商、服务提供商和开源软件维护者的采用。

查看英文原文: Monitoring Microservices - A Prediction for 2018

2017-12-03 18:003944
用户头像

发布了 391 篇内容, 共 143.9 次阅读, 收获喜欢 257 次。

关注

评论

发布
暂无评论
发现更多内容

史上最强代码自测方法,没有之一!

万俊峰Kevin

微服务 单元测试 go-zero 测试工具 Go 语言

2022年中国智慧医疗行业洞察

易观分析

智慧医疗

日志管理系统,多种方式总结

架构 日志 slf4j logback

互联网人的命运,就是活到30岁都难?

码农参上

人生 互联网人 打工人

一个关于 += 的谜题

AlwaysBeta

Python 编程语言

模块八 - 消息队列存储数据表结构设计

圈圈gor

架构实战营 「架构实战营」

边缘计算场景下Service Mesh的延伸和扩展

华为云原生团队

开源 边缘计算 边缘技术 边缘 边缘云

Hudi Bucket Index 在字节跳动的设计与实践

字节跳动数据平台

数据库 字节跳动 数据湖 Hudi

郑州轻工业大学——HarmonyOS宠物健康系统的开发分享

HarmonyOS开发者

HarmonyOS 健康检查

Android技术分享| 【你画我猜】Android 快速实现

anyRTC开发者

音视频 移动开发 互动白板 Andriod 你画我猜

移动开发er,10万奖金等你来战!

Speedoooo

活动 前端开发 移动开发 黑客马拉松 黑客松

80 行代码实现简易 RxJS

CRMEB

喜报!龙蜥操作系统&龙蜥社区双双荣登2021“科创中国”开源创新榜!

OpenAnolis小助手

开源 操作系统 创新

2022重磅:增长法则-巧用数字营销 突破企业困局

博文视点Broadview

第八周作业

cqyanbo

鉴机识变,面向未来|RocketMQ Summit 2022 即将来袭

阿里巴巴云原生

阿里云 开源 RocketMQ 云原生 开源消息队列

java培训:Java类加载机制的理解

@零度

JAVA开发 类加载机制

基于 Kafka 的实时数仓在搜索的实践应用

vivo互联网技术

kafka 服务器 搜索 数据舱

如何通过 draftjs 设计留言框

全象云低代码

前端 低代码 留言 draftjs 留言框

如何写好一个Java类?

蜜糖的代码注释

Java 整洁代码 2月月更

基于STM32+ESP8266+华为云IoT设计的智能门锁

DS小龙哥

2月月更

不能Hook的人生不值得 jsHook和模拟执行

奋飞安全

安全 js hook jshook

分享两个常见的搜索算法:BFS和DFS

华为云开发者联盟

算法 DFS 深度优先搜索 BFS 搜索算法

大数据培训:Flink的提交模式

@零度

大数据 flink

理论+实践,带你掌握动态规划法

华为云开发者联盟

AI 算法 动态规划法 子问题

ModStartCMS模块化建站系统 v3.3.0 组件功能升级,事件触发增强

ModStart开源

编写 Kubernetes 部署脚本将 httpserver 部署到 Kubernetes 集群

tom

模块八作业

黄秀明

「架构实战营」

混合编程:如何用pybind11调用C++

华为云开发者联盟

c++ Python API 混合编程 pybind11

web前端培训:vue3源码中细节知多少

@零度

Vue 前端开发

7大迹象,表明你的DevOps 做对了!

飞算JavaAI开发助手

微服务监控:2018年预测_DevOps & 平台工程_Mark Little_InfoQ精选文章