写点什么

Percolator:大数据集增量更新系统

  • 2010-10-24
  • 本文字数:1728 字

    阅读完需:约 6 分钟

随着需要收集和处理的数据规模以惊人的速率增长,曾经只有 Google 级别的系统才会遇到的可伸缩性需求变得更普遍,并常常需要专门的解决方案。Daniel Peng 和 Frank Dabek最近发表了一篇论文,介绍 Google 索引系统 Percolator 的技术细节。Percolator 目前运行在数千台服务器上,存储了数十 PB 的数据,并且每天要处理数十亿次的更新。

在抓取网页的同时进行索引更新,意味着在新文档不断加入时,需要对已有的总文档库进行持续地更新。这是通过小规模、独立的变换实现海量数据转换任务的一个典型范例。现有的技术基础平台恰恰不能胜任这样的任务:传统 DBMS 无法满足存储量和吞吐率的需求,而 MapReduce 和其它批处理系统无法逐个处理小规模更新,因为它们必须依赖于创建大量的批处理任务才能获得高效率。

Daniel 和 Frank 解释说,尽管索引的过程是一项批处理任务,可以通过一系列的 MapReduce 操作来表现。但每次重新爬完一些页面后要更新索引的时候,由于新增文档和已有文档之间存在链接引用的关系,只对增量部分运行 MapReduce 操作是远远不够的,实际上必须基于整个文档库进行 MacReduce 操作。事实上在 Percolator 出现之前,索引就是以上述的方式更新的。这样带来的主要问题就是由于要对整个文档库重新处理而产生的延迟。

解决此问题的关键是优化增量数据的处理方式。Percolator 的一个关键设计理念是:提供对库中文档的随机访问,以实现对单个文档的处理,从而避免了像 MapReduce 那样对文档全集进行处理。Percolator 通过“快照隔离”实现了遵从 ACID 的跨行及跨表事务,从而满足多线程在多台服务器上对文档库进行转换操作的需求。Percolator 还提供了“观察者(observer)”机制,在用户指定的列发生更新之后,这些观察者会被系统触发,以帮助开发者追踪计算过程所处的状态。

论文作者补充到:

Percolator 是专门针对处理增量更新而设计,但不是用于取代大多现有的数据处理解决方案。那些不能被拆分为单个微小更新的计算任务(比如对一个文件排序)仍然最好由 MapReduce 承担。

Percolator 更适合于在高一致性及在数据量和 CPU 等方面有很高需求的计算任务。对于 Google 来说,它的主要用途是将网页实时地添加到 Web 索引中。运用 Percolator,Google 可以在抓取网页文档的同时来对文档进行处理,从而将平均延迟降低为原来的百分之一,平均文档寿命(document age)降低 50%。

Percolator 建立于分布式存储系统 BigTable 之上。集群里的每台服务器上运行着三个可执行文件:worker, BigTable tablet 服务器 Google File System chunkserver 服务器

所有观察者都被关联到 Percolator worker 上,后者会对 BigTable 进行扫描,一旦发现更新过的列就会在 worker 进程中以函数调用的方式触发(“notification”)相应的观察者。观察者通过向 BigTable tablet 服务器发送读、写 RPC 请求来运行事务,继而触发后者向 GFS chunkserver 服务器发送读、写 RPC 请求。

Percolator 没有提供用于事务管理的中心服务器,也没有全局锁侦测器。因为 Percolator 不需要像运行 OLTP 任务的传统 DBMS 一样,对低延迟有很高要求,所以它采取了一种延迟的方式来清理锁,也因此在事务提交时造成了数十秒的延迟。

这种方法增加了事务冲突时的延迟,但保证了系统可以扩展到几千台服务器的规模……尽管增量数据处理在没有强事务的情况下也能进行,但事务使得开发者更容易地去分析系统的状态,并避免将错误引入到长时间运行的文档库中。

Percolator 的架构可以在普通廉价服务器集群上线性扩展多个数量级。在性能方面,Percolator 处于 MapReduce 和 DBMS 之间。和 DBMS 相比,在处理同样数量的数据情况下,Percolator 由于其分布式架构,资源消耗远大于 DBMS,同时它还引入了约 30 倍的额外性能开支。和 MapReduce 相比,Percolator 可以以低很多的延迟来处理数据,同时需要额外的资源来支持随机查找。Percolator 自 2010 年 4 月开始为 Google web 搜索提供索引,它利用合理的额外资源消耗,获得了更低的延迟。

不知道读者们是否看见或者预见了对处理海量数据集的快速增长的需求了没有?前不久 Phil Wehlan 问了同样的问题,希望大家给他提供反馈。

查看英文原文: Percolator: a System for Incrementally Processing Updates to a Large Data Set

2010-10-24 20:009602

评论

发布
暂无评论
发现更多内容

Wireshark网络工具是什么?

小齐写代码

什么是网络地址转换协议

郑州埃文科技

数仓如何递归查询视图依赖

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 华为云GaussDB(DWS)

权威媒体评选:2023年25个最佳开源软件

SEAL安全

开源 AI LLMs

CDP技术系列(三):百万级QPS的人群命中服务接口性能优化指南

京东科技开发者

光纤的跳线和尾纤

小齐写代码

融合创新:传统企业数字化转型的业务、战略、操作和文化变革

天津汇柏科技有限公司

数字化转型

用Python实现高效数据记录!Web自动化技术助你告别重复劳动!

测试人

软件测试

如何正确使用 Bean Validation 进行数据校验

得物技术

数据分析

CDP技术系列(二):ClickHouse+Bitmap实现海量数据标签及群体组合计算

京东科技开发者

有挑战才有收获!PaddleOCR算法模型挑战赛火热开启!

飞桨PaddlePaddle

人工智能 算法 大赛 百度飞桨 算法模型

BricsCAD 24 mac中文完美破解版(CAD建模软件) 支持M和 macOS Sonoma 14 附安装教程

Rose

BricsCAD 23中文版 cad bricscad 24 BricsCAD 24破解版 BricsCAD 24下载

一篇全掌握!TDengine 在能源、电力、汽车、物流、工业制造等十大行业应用合集

TDengine

tdengine 时序数据库

基于Express的微信公众号开发

派大星

Express 微信公众号开发

2024-01-24:用go语言,已知一个n*n的01矩阵, 只能通过通过行交换、或者列交换的方式调整矩阵, 判断这个矩阵的对角线是否能全为1,如果能返回true,不能返回false。 我们升级一下:

福大大架构师每日一题

福大大架构师每日一题

K8s集群CoreDNS监控告警最佳实践

华为云开发者联盟

开发 华为云 k8s集群 华为云开发者联盟

夏志刚介绍

管理在线

企业战略管理体系 企业精益管理体系 企业创新管理类体系 企业培训体系 企业标准化管理体系

【Linux技术专题】「夯实基本功系列」带你一同学习和实践操作Linux服务器必学的Shell指令(排查问题指令 - 下)

码界西柚

Linux 日志处理 Shell指令 查询日志 2024年第二十篇文章

Slidepad for mac:给你的 macOS 添加一块 iPad 式的悬浮窗口

Rose

Slidepad mac效率软件

Mac上超好用的鼠标平滑滚动增强工具:SmoothScroll

Rose

Mac软件 鼠标工具 SmoothScroll 平滑滚动

华为云云绘本第2期:面对等保三级,谁还在瞎折腾?

华为云PaaS服务小智

软件开发 华为云

PD虚拟机系统镜像 原版纯净的Windows系统安装包

Rose

windows 11 pd虚拟机 win系统下载

Percolator:大数据集增量更新系统_Google_Jean-Jacques Dubray_InfoQ精选文章