如何 0 成本启动全员 AI 技能提升?戳> 了解详情
写点什么

阿里 99 大促模型识别背后的样本生成

  • 2019-09-29
  • 本文字数:2868 字

    阅读完需:约 9 分钟

阿里99大促模型识别背后的样本生成

背景

在上一篇文章《详解阿里99大促活动页内容识别技术实现》里,我们介绍了在淘宝 99 大促中,我们使用了怎样的算法模型去识别并完成自动化测试的。

样本问题的困难点

淘宝大促有近百个模块、上千个页面,模块间具有相似性,并且模块内部具备多种状态,如果想要准确识别每个模块类型,单模块的样本数量至少要达到万级,而人工标注成本高、效率低下、数据量少,纯靠人力是无法满足模型诉求的。基于此,今天,我来介绍下,模型识别背后的大批量数据样本生成的技术方案。

思路

总体技术方案如下,后面会分别详细讲:


模型的样本要求

算法模型识别的输入是 99 大促的各个会场截图,输出是目标模块名称及其在截图中的坐标位置。


模型训练时,就是把模块渲染图、相应坐标位置与模块类型输入给模型,交给模型去进行监督学习。而模型需要的,就是各个模块大批量的图片样本。



一个模块,是由 View 和 ViewModel 组合而成,而 View 是固定的,ViewModel 跟随会场场景不同,是动态变化的。


那么,如果我们能拿到描述模块的 View 的这一层 DSL,辅助以动态的 ViewModel 数据,再把 View 和 ViewModel 渲染成图片,那我们就可以生成无穷无尽的样本数据了。

DSL 描述 View


仔细梳理之后,View 拆分为原子级元素(Text、Image、Shape)和原子级元素的组合关系(Group),即与 HTML DOM 树状结构中的各层级容器嵌套与叶子节点类型是同样的逻辑。


基于节点类型和节点样式的 DSL,我们就能描述一个完整的 View 了。


{  "layers": [{    "frame": {      "y": 354,      "x": 44,      "height": 32,      "width": 312    },    "id": 2,    "type": "text",    "value": "Adidas Stan Smith",    "textStyles": {      "fontFamily": "Helvetica, sans-serif",      "fontSize": 24    }  }, {    "frame": {      "y": 0,      "x": 384,      "height": 342,      "width": 342    },    "id": 3,    "type": "image",    "value": "//img.alicdn.com/bao/uploaded/i1/TB1.mcuNpXXXXctXFXXSutbFXXX.jpg_350x350Q50s50.jpg_.webp",    "styles": {      "height": 342,      "width": 342    }  }, {    "frame": {      "y": 0,      "x": 384,      "height": 342,      "width": 342    },    "id": 4,    "type": "shape",    "styles": {      "height": 342,      "width": 342,      "backgroundColor": "rgba(0, 0, 0, 0.1)"    }  }],  "frame": {    "y": 0,    "x": 0,    "height": 4920,    "width": 750  },  "id": 1,  "type": "group",  "moduleName": "pmod-zebra-recommand-item"}
复制代码


其中,除了节点类型和节点样式之外,最外层的 moduleName 代表模块名称,id 是为了标记每一个子元素,frame 是每个子元素的坐标位置、辅助算法模型识别模块内部子元素,value 值只有 text 和 image 才有,对应相应的文本值还有图片链接。

获取模块 View 的 DSL

有 3 种方案可以获取到模块 View 的 DSL,分别是:


  1. 从代码仓库中获取;

  2. 从 sketch 视觉稿中生成;

  3. 从浏览器渲染好的页面中获取。


我最后选择了第三种方案,放弃第一个方案是因为代码写法千差万别,很多展现逻辑还包含在 js 代码中,并且还要处理各种 for 循环子 View、style 的映射关系等等,复杂度太高。第二个方案目前集团内已有技术方案 imgcook,这一块的准确率听说还不错,并且一直在持续优化,而最终选择第三个方案的原因是,能 100%准确地还原模块 DSL,并且只需要关注模块最终展现给用户时候的形态,不需要理会过程中开发者做得各种复杂业务逻辑,复杂度相对低很多。

技术方案

在开发流程上,每个模块在开发完成后,都会有对应的模块预览页面。我使用了 puppeteer 模拟真实浏览器,对模块的节点信息进行提取,并保存为规范的 DSL。


清洗 window.getComputedStyle

通过 window.getComputedStyle 获取 DOM 节点的样式,会返回包含 280 个样式属性的对象,如果把每个 DOM 节点的所有 280 个样式属性都存储到 DSL 中,会造成两个问题:


  • DSL 文件冗余,且文件大小过大,解析耗时。

  • 增加算法同学对 DSL 的理解和调整成本。


第一步,隐藏默认属性值;


大部分的样式属性都是默认值,我们首先把默认的样式属性剔除出去。


css{alignSelf: 'auto',...}
复制代码


第二步,剔除无效属性;


开发者常用的样式属性在 20 个左右,有很多的样式是不具备实际效用的,把无效用的样式属性剔除掉,比如说:


{zoom: '1',writingMode: 'horizontal-tb',...}
复制代码


第三步,transform 动态计算


通过 getComputedStyle 拿到的 transform 属性值是一个矩阵方法 matrix(),感兴趣的同学可以去学习理解下 2D 转换矩阵。我们使用 puppeteer 模拟浏览器设置的屏幕宽度是 750,也就是说,得到的 transform 值中 translateX 和 translateY 两个值是以 750 为基准换算得到的一个数字,假如想要在下面描述到的将 DSL 渲染成图时(算法同学期望能模拟各种各样的屏幕尺寸去生成样本),就必须将获取到的 transform 值换算成相应屏幕设备时的值。


# 为了方便算法同学更好使用DSL渲染成图的工具,这里使用python来实现# screenshotShape是一个数组,代表屏幕宽高  [width, height]if 'transform' in style and 'matrix' in style['transform']:    matrix = style['transform'][7:-1].split(',')    translate = list(map(float, matrix[-2:]))    translateResult =  list(map(str, [distance*(screenshotShape[0]/750) for distance in translate]))    matrix[-2:] = translateResult
复制代码


通过以上 3 个步骤,最终得到的 DOM 节点样式属性个数一般维持在 20 个以内,能使输出的 DSL 精简非常多。

DSL 渲染成图片

同样的,我们能基于 puppeteer 去对页面做操作,也能使用它去把 DSL 渲染成目标模块页面,并截图。


首先,建立 DSL 与 HTML 标签的映射关系



其次,如果是 DSL 类型为 Group,就递归遍历里面的所有子元素,以此类推。完整的渲染流程图如下:


ViewModel 动态数据

一个模块,应用到 99 大促、双十一等各种会场,背后样式都是一致的,只有对应的数据不同,动态的数据一般是商品图片和商品信息。


闲鱼有一亿多的商品数据,如果把这商品数据拿过来与 View 一起渲染成模块,每个模块就有了成千上万种展现形态,且贴合算法模型实际识别过程中的输入,既能满足样本数量的要求,也能符合模型实际识别的场景,使模型准确率获得更大地提升。

效果

通过这样一条生成样本的通道,每个模块都能够提供给算法同学几万张质量很高的样本截图,使模型的准确率达到 98%以上。

展望

上述文章描述了如何批量生成样本来帮助解决算法模型对 99 大促和双十一会场中各个模块的识别。


目前,对模块 DSL 的动态调整依赖算法同学对模块的理解,eg.改变圆角 borderRadius 生成更多正向样本,或者增加噪声,eg.删除商品内容节点等生成负向样本,这些操作都需要算法同学对 DSL 进行定制化配置。在未来,我们希望尝试把这部分的工作也交给模型去处理,让模型对样本生成做决策,调整 DSL 的局部,并生成样式更加丰富和可靠的样本。


本文转载自公众号闲鱼技术(ID:XYtech_Alibaba)


原文链接


https://mp.weixin.qq.com/s/CvS4y73Q7hgIAfSzhxEuNg


2019-09-29 08:001444

评论

发布
暂无评论
发现更多内容

自助洗车机洗车怎么收费和付费

共享电单车厂家

自助洗车加盟 自助洗车收费 自助洗车付费

vue-表单输入绑定

小恺

6月月更

如何系统地学习 C++ 语言?太全面了!

Jackpop

使用 Amazon EC2 降低 DeepRacer 的训练成本 DeepRacer-for-cloud 的实践操作

亚马逊云科技 (Amazon Web Services)

Amazon EC2 EC2

阿里云 MSE 基于 Apache APISIX 的全链路灰度方案实践

API7.ai 技术团队

阿里云 MSE APISIX 网关 全链路灰度

写代码过程中最忌讳什么?

Jackpop

首批 | 腾讯云完成国内首个云原生安全成熟度评估

腾讯安全云鼎实验室

云原生

自助洗车市场悄然兴起你准备好了吗

共享电单车厂家

自助洗车 自助洗车加盟

API 网关 Apache APISIX 助力雪球双活架构演进

API7.ai 技术团队

zookeeper 投资 网关 APISIX APISIX Summit

SRE,了解一下?35+岁程序员新选择

华为云开发者联盟

SRE 华为云

24H共享便民自助洗车加盟怎么样

共享电单车厂家

共享自助洗车 自助洗车加盟 24小时自助洗车 便民自助洗车

测试进阶必备,这5款http接口自动化测试工具不要太香~

伤心的辣条

Python 程序人生 软件测试 自动化测试 接口自动化测试

FutureTask

急需上岸的小谢

6月月更

IT采购专家指导 联想百应618 IT运维软硬服一站集采

极客天地

Jupyter Notebook,太强大了!

Jackpop

10段实用Python代码,帮我省了几万块钱!

Jackpop

@开发者 云端一条生产线,让软件开发更敏捷、更安全

华为云开发者联盟

云计算 敏捷 华为云 devcloud

7 月亚马逊云科技培训与认证课程,精彩不容错过!

亚马逊云科技 (Amazon Web Services)

架构师 培训 认证

JDK7 HashMap如何实现?

源字节1号

软件开发 前端开发 后端开发 小程序开发

“互联网+”大学生创新创业大赛来了,欢迎报名龙蜥社区赛题!

OpenAnolis小助手

开源 操作系统 互联网+ 龙蜥社区 大学生创新创业大赛

大数据平台迁移实践 | Apache DolphinScheduler 在当贝大数据环境中的应用

白鲸开源

Apache 大数据 开源 DolphinScheduler workflow

Apache Dolphinscheduler3.0.0-beta-1 版本发布,新增FlinkSQL、Zeppelin任务类型

白鲸开源

Apache 大数据 开源 Apache DolphinScheduler 消息队列 workflow

Curve 进入 CNCF Sandbox,完善统一云原生开源存储拼图

网易数帆

开源 分布式 云原生 存储 cncf

低代码开发:企业应用构建新模式

力软低代码开发平台

要想自助洗车加盟赚钱记住这几点

共享电单车厂家

自助洗车加盟 自助洗车品牌

融云 x 川航: 为民航通信安上“即时之翼”

融云 RongCloud

SQL和Python 哪个更容易自学?

Jackpop

共享自助洗车机让你告别传统洗车

共享电单车厂家

共享自助洗车 自助洗车加盟

开启全方位安全巡检

观测云

华为云重磅发布:“乐高式”自动驾驶研发开放平台,携手伙伴共建生态

华为云开发者联盟

自动驾驶 云计算 华为云

阿里99大促模型识别背后的样本生成_文化 & 方法_云听_InfoQ精选文章