写点什么

用 FATE 进行图片识别的联邦学习实践

  • 2020-05-07
  • 本文字数:13557 字

    阅读完需:约 44 分钟

用FATE进行图片识别的联邦学习实践

FATE(Federated AI Technology Enabler)是联邦机器学习技术的一个框架,其旨在提供安全的计算框架来支持联邦 AI 生态。FATE 实现了基于同态加密和多方计算(MPC)的安全计算协议,它支持联邦学习架构和各种机器学习算法的安全计算,包括逻辑回归、基于树的算法、深度学习和转移学习。


联邦机器学习又名联邦学习、联合学习与联盟学习,它能有效帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下,进行数据使用和机器学习建模,消除由于行业竞争、隐私安全与行政手续等问题带来的数据孤岛,让以数据为基础的机器学习顺利进行。


KubeFATE 支持通过 Docker Compose 和 Kubernetes 进行 FATE 部署。我们建议使用 Docker Compose 安装快速开发和学习 FATE 集群,同时使用 Kubernetes 安装生产环境。


深度神经网络(DNN)是在输入和输出层之间具有多层的人工神经网络(ANN)。


本文以经典的神经网络 MNIST 为例子,展示联邦学习版的深度神经网络训练过程。我们使用 KubeFATE 快速进行 FATE 框架的部署。因为模拟联邦学习的双方,我们需要准备两台 Ubuntu 的机器(物理机或虚拟机)。

1、安装 docker 和 docker-compose

Ubuntu 安装 docker:


$ sudo apt-get update$ sudo apt-get install \    apt-transport-https \    ca-certificates \    curl \    gnupg-agent \    software-properties-common$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -$ sudo apt-get update$ sudo apt-get install docker-ce docker-ce-cli containerd.io
复制代码


安装 docker-compose:


$ sudo curl -L https://github.com/docker/compose/releases/download/1.23.2/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose$ sudo chmod +x /usr/local/bin/docker-compose
复制代码

2、安装 KubeFATE

学习环境推荐使用 Docker 方式部署。使用 Docker 方式部署分为两步,先根据 parties.conf 配置文件生成 docker-compose 文件。通过 scp 把 docker-compose 文件复制到目标机器上,然后通过 ssh 命令登录到目标机器并运“docker-compose up”。


选择两台机器其中之一作为部署机。


1.在 KubeFATE 的 release 页面下载软件包 kubefate-docker-compose.tar.gz 并解压:


$ wget https://github.com/FederatedAI/KubeFATE/releases/download/v1.3.0-a/kubefate-docker-compose.tar.gz$ tar xzf kubefate-docker-compose.tar.gz
复制代码


2.进入 docker-deploy/ 目录,修改 parties.conf 文件:


$ cd docker-deploy$ vi parties.conf
复制代码


parties.conf:


user=rootdir=/data/projects/fatepartylist=(10000 9999)partyiplist=(10.160.175.20 10.160.162.5)servingiplist=(10.160.175.20 10.160.162.5)exchangeip=
复制代码


说明:


user:两台目标机器的用户 id,建议用户 root 或权限合适的用户。


dir:目标机器上存放 docker-compose 文件的目录。


partylist:FATE 集群的 party 列表。这里是两方,用数字表示。


partyiplist:FATE 训练集群的 IP 地址,与 partylist 对应,例如上例 id 为 10000 的训练集群 ip 地址是 10.160.175.20。注意这里要替换成你准备的两台机器对应的 IP。


servingiplist:FATE 在线推理集群的 IP 地址,与 partylist 对应,可以和训练集群在一台机器上,也可以单独是一台机器。本文里训练集群和在线推理集群使用同一台机器。


exchangeip:多于两方部署的时候推荐使用 exchange 模式。Exchange 是一个集中交换数据的节点,记录了所有 party 的 IP 地址,每个 party 只需要知道 exchange 节点的 IP 地址就可交换数据。本文是两方直连,所有不填写 exchange。


3.生成部署 FATE 的 docker-compose 文件


$ bash generate_config.sh
复制代码


命令会在 outputs 文件夹下面生成对应的压缩包:confs-.tar 和 serving-.tar。


4.部署 FATE


$ bash docker_deploy.sh all
复制代码


因为用到了 scp 和 ssh 命令,所以运行这条命令的时候需要输入密码。为了方便可以在部署机和目标机之间做免密码处理。


两台机器在互联网可用环境下,Docker 会自动下载 FATE 需要的镜像。如果是没有互联网的环境,参考 Github 上使用离线镜像文章


5.免密处理(可选)


用 10.160.175.20 作为部署机,需要可以免密码登录本机和 10.160.162.5 (目标机)。


生成 ssh key:


$ ssh-keygen -t rsa
复制代码


一直回车即可,会在~/.ssh/目录下生成一个 id_rsa.pub 文件。分别在两个机器的~/.ssh/目录下新建一个 authorized_keys 文件,并把刚刚生成 id_rsa.pub 的内容填写进去。


6.验证是否部署成功。分别登录两台机器运行以下命令来验证:


$ docker ps
CONTAINER ID IMAGE ...11e86440c02d redis:5 ...16570fa47d36 federatedai/serving-server:1.2.2-release ...b64b251e9515 federatedai/serving-proxy:1.2.2-release ...75603d077a94 federatedai/fateboard:1.3.0-release ...38cb63178b79 federatedai/python:1.3.0-release ...80876768cd35 federatedai/roll:1.3.0-release ...955bab0ae542 federatedai/meta-service:1.3.0-release ...89928bf28b37 federatedai/egg:1.3.0-release ...63e4ae852d0d mysql:8 ...3cc1a4709765 federatedai/proxy:1.3.0-release ...0e1d945b852c federatedai/federation:1.3.0-release ...f51e2e77af88 redis:5 ...
复制代码

3、准备数据集

本文使用 MNIST 数据集,MNIST 是手写数字识别的数据集。从 kaggle 下载 csv 格式的数据集。


FATE 训练时需要数据集有 id,MNIST 数据集里有 6w 条数据,模拟横向 l 联邦学习,把数据集分为两个各有 3w 条记录的数据集。


$ awk -F'\t' -v OFS=',' '  NR == 1 {print "id",$0; next}  {print (NR-1),$0}' mnist_train.csv > mnist_train_with_id.csv
复制代码


这句话是在第一行最前面加上 id,第二行开始加序号,并用逗号作为分隔符。


$ sed -i "s/label/y/g" mnist_train_with_id.csv
复制代码


将表头的 label 替换成 y,在 FATE 里 label 的名字通常为 y。


$ split -l 30001 mnist_train_with_id.csv mnist_train_3w.csv
复制代码


将 mnist_train_with_id.csv 分割,每一个文件有 30001 行(一行标题和 30000 行数据)。会生成两个文件:mnist_train_3w.csvaa 和 mnist_train_3w.csvab。将两个文件重命名:


$ mv mnist_train_3w.csvaa mnist_train_3w_a.csv$ mv mnist_train_3w.csvab mnist_train_3w_b.csv$ sed -i "`cat -n mnist_train_3w_a.csv |head -n 1`" mnist_train_3w_b.csv
复制代码


将 mnist_train_3w_a.csv 文件的第一行(csv 的表头)插入 mnist_train_3w_b.csv 的最前面。这样我们就得到了两个有表头和 id 的数据集,各有 30000 条数据。


分别将两个文件拷贝到两台机器上的/data/projects/fate/confs-/shared_dir/examples/data 目录里。


Shared_dir 目录是本地文件系统和 docker 容器中文件系统的共享目录,使容器可以访问宿主机的文件。

4、准备 FATE Pipeline

本文在 FATE 里使用 Keras 运行 DNN,参考文章


1.1 准备 Keras 模型


进入 guest 方(本文选用 9999 作为 guest)的 python 容器:


$ docker exec -it confs-9999_python_1 bash
复制代码


进入 Python 解释器:


$ python
复制代码


构建一个 Keras 模型:


>>>import keras>>>from keras.models import Sequential>>>from keras.layers import Dense, Dropout, Flatten>>>model = Sequential()>>>model.add(Dense(512,activation='relu',input_shape=(784,)))>>>model.add(Dense(256,activation='relu'))>>>model.add(Dense(10,activation='softmax'))
复制代码


得到 json 格式的模型:


>>>json = model.to_json()>>>print(json)
{"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 784], "dtype": "float32", "units": 512, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.4", "backend": "tensorflow"}
复制代码


1.2 修改 test_homo_nn_keras_temperate.json


vi examples/federatedml-1.x-examples/homo_nn/test_homo_nn_keras_temperate.json 
复制代码


将刚刚输出的 json 格式的模型替换到 algorithm_parameters. homo_nn_0.$nn_define 位置。


将 work_mode 设置为 1,将 guest 设置为 9999,host 和 arbiter 为 10000,将


{    "initiator": {        "role": "guest",        "party_id": 9999    },    "job_parameters": {        "work_mode": 1    },    "role": {        "guest": [            9999        ],        "host": [            10000        ],        "arbiter": [            10000        ]    },
复制代码


修改 guest 和 host 数据集的名字和命名空间,role_parameters. guest.args.data. train_data:


"name": "homo_mnist_guest","namespace": "homo_mnist_guest"
复制代码


role_parameters. host.args.data. train_data:


"name": "homo_mnist_host","namespace": "homo_mnist_host"
复制代码


1.3 分别上传 host 方(10000)和 guest 方(9999)数据


新建 upload_data_guest.json


$ vi examples/federatedml-1.x-examples/homo_nn/upload_data_guest.json
{ "file": "examples/data/mnist_train_3w_b.csv", "head": 1, "partition": 10, "work_mode": 1, "table_name": "homo_mnist_guest", "namespace": "homo_mnist_guest"}
复制代码


上传数据到 FATE:


$ python fate_flow/fate_flow_client.py -f upload -c examples/federatedml-1.x-examples/homo_nn/upload_data_guest.json

复制代码


登陆到 host(10000)机器的 Python 容器,并对应新建 upload_data_host.json


$ docker exec -it confs-10000_python_1 bash$ vi examples/federatedml-1.x-examples/homo_nn/upload_data_host.json
{ "file": "examples/data/mnist_train_3w_a.csv", "head": 1, "partition": 10, "work_mode": 1, "table_name": "homo_mnist_host", "namespace": "homo_mnist_host"}
复制代码


上传数据到 FATE:


$ python fate_flow/fate_flow_client.py -f upload -c examples/federatedml-1.x-examples/homo_nn/upload_data_host.json
复制代码


登录到 FateBoard 可以查看上传任务情况,FateBoard 的地址是 http://party-IP:8080,如下图所示为成功:



1.4 用 fate_flow 运行 DNN


FATE 的训练应该由 guest 方发起,所以我们登录到 guest 的 Python 容器:


$ docker exec -it confs-9999_python_1 bash
复制代码


使用 fate_flow 运行 DNN 任务:


$ python fate_flow/fate_flow_client.py -f submit_job -c examples/federatedml-1.x-examples/homo_nn/test_homo_nn_keras_temperate.json -d examples/federatedml-1.x-examples/homo_nn/test_homo_nn_train_then_predict.json
复制代码


得到输出:


{    "data": {        "board_url": "http://fateboard:8080/index.html#/dashboard?job_id=202003191510586887818&role=guest&party_id=9999",        "job_dsl_path": "/data/projects/fate/python/jobs/202003191510586887818/job_dsl.json",        "job_runtime_conf_path": "/data/projects/fate/python/jobs/202003191510586887818/job_runtime_conf.json",        "logs_directory": "/data/projects/fate/python/logs/202003191510586887818",        "model_info": {            "model_id": "arbiter-10000#guest-9999#host-10000#model",            "model_version": "202003191510586887818"        }    },    "jobId": "202003191510586887818",    "retcode": 0,    "retmsg": "success"}
复制代码


model_id 和 model_version 合起来是确定一个模型的依据,下一步进行预测时候会用到。


登录 fateboard 查看任务,下图为完成训练:


5、使用模型预测

我们用之前训练的 MNIST 数据集来做预测,所以就不用再上传数据了。


$ awk -F'\t' -v OFS=',' '  NR == 1 {print "id",$0; next}  {print (NR-1),$0}' mnist_test.csv > mnist_test_with_id.csv$ sed -i "s/label/y/g" mnist_test_with_id.csv
复制代码


1.1 定义预测 pipeline


预测也是由 guest(9999)方发起,新建 test_predict_conf.json


$ vi examples/federatedml-1.x-examples/homo_nn/test_predict_conf.json
{ "initiator": { "role": "guest", "party_id": 9999 }, "job_parameters": { "work_mode": 1, "job_type": "predict", "model_id": "arbiter-10000#guest-9999#host-10000#model", "model_version": "202003191510586887818" }, "role": { "guest": [9999], "host": [10000], "arbiter": [10000] }, "role_parameters": { "guest": { "args": { "data": { "eval_data": [{"name": "homo_mnist_guest", "namespace": "homo_mnist_guest"}] } } }, "host": { "args": { "data": { "eval_data": [{"name": "homo_mnist_host", "namespace": "homo_mnist_host"}] } } } }}
复制代码


job_parameters 里面的 model_id 和 model_version 就是刚刚训练时输出里面的,guest 和 host 的数据的名字和命名空间都和训练时一致。


1.2 进行预测


$ python fate_flow/fate_flow_client.py -f submit_job -c examples/federatedml-1.x-examples/homo_nn/test_predict_conf.json
复制代码


登录 Fateboard 查看是否完成预测。


1.3 下载预测结果


$ python fate_flow/fate_flow_client.py -f component_output_data -j 2020032001133193102117 -p 9999 -r guest -cpn homo_nn_1 -o examples/federatedml-1.x-examples/homo_nn
复制代码


f:fate_flow 的任务种类,component_output_data 是获取模块输出用的。


j:jobID,在刚刚预测时候输出里。


p:partyID,guest 方是 9999。


r:角色,guest。


cpn:模块名称,是训练模型时 pipeline(examples/federatedml-1.x-examples/homo_nn/test_homo_nn_train_then_predict.json)定义的,本次是 homo_nn_1。


o 是下载结果的输出路径。


运行完这条命令之后,会发现 examples/federatedml-1.x-examples/homo_nn/目录下多了一个 job_2020032001133193102117_homo_nn_1_guest_9999_output_data 目录。


查看一下这个目录里面的内容:


ls job_2020032001133193102117_homo_nn_1_guest_9999_output_dataoutput_data.csv  output_data_meta.json
复制代码


output_data.csv:预测的结果集。


output_data_meta.json:结果集的元数据,就是结果集表头。


作者介绍:


彭路,VMware 云原生实验室工程师,FATE/KubeFATE 项目贡献者。


2020-05-07 11:494029

评论 2 条评论

发布
用户头像
python fate_flow/fate_flow_client.py -f submit_job -c examples/federatedml-1.x-examples/homo_nn/test_homo_nn_keras_temperate.json -d examples/federatedml-1.x-examples/homo_nn/test_homo_nn_train_then_predict.json
执行完这一步,fate board 挂掉了,这个博主有遇到这种情况吗
2022-01-09 20:21
回复
用户头像
想问下  进入python解释器后,docker容器总是自动退出 怎么解决
2020-12-23 15:57
回复
没有更多了
发现更多内容

走进厦航,体验智能会计时代的业财融合

用友BIP

智能会计 业财融合

一键自动修改和翻新OC源码,解决苹果审核4.3和马甲问题

GPU深度学习性能的三驾马车:Tensor Core、内存带宽与内存层次结构

Baihai IDP

人工智能 程序员 AI gpu LLM

时间序列数据压缩算法简述

CnosDB

开源 时序数据库 CnosDB

纯CSS实现炫酷背景霓虹灯文字效果

南城FE

CSS 前端 动画 交互设计

Tomcat 配合虚拟线程,一种新的编程体验

越长大越悲伤

Java springboot 虚拟线程

喜讯!华秋荣获2023中国产业数字化百强榜企业

华秋电子

SQL 日期处理和视图创建:常见数据类型、示例查询和防范 SQL 注入方法

小万哥

MySQL 数据库 程序员 sql 后端开发

08 | 栈:如何实现浏览器的前进和后退功能

鲁米

一次讲清楚京东科技百亿级用户画像平台的探索和实践 | 京东云技术团队

京东科技开发者

数据库 Clickhouse 用户画像 用户画像平台

CnosDB FDW:打通一扇通往PostgreSQL世界的大门

CnosDB

开源 时序数据库 CnosDB

服务器集群技术有哪几种类型

Geek_f19a80

服务器

2024深圳电子展,加快粤港澳电子信息发展,重点打造湾区经济

AIOTE智博会

电子展 深圳电子展 电子信息展 电博会

京东面试:说说Cookie、Session和Token的区别?

王磊

Java 面试

DDD学习与感悟——总是觉得自己在CRUD怎么办? | 京东云技术团队

京东科技开发者

架构 DDD 软件设计 curd

用友与厦国会联合培训,探索智能会计时代业财融合成功模式

用友BIP

智能会计

对标世界一流!用友已与74家中央企业达成集团级合作!

用友BIP

重磅签约!美团携手用友推进数智化升级

用友BIP

企业数智化

如何从 Jira 成功迁移到极狐GitLab,看这个就够了!

极狐GitLab

项目管理 DevOps gitlab 敏捷开发

三层开发

Geek_8da502

APP开发

细说GaussDB(DWS)的2种查询优化技术

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 华为云GaussDB(DWS)

Amazon CodeWhisperer 正式发布可免费供个人使用

亚马逊云科技 (Amazon Web Services)

人工智能 Amazon Lambda 云上探索实验室 Amazon CodeWhisperer Amazon Cloud9

CnosDB 科技春晚暨CnosDB 2.4.0 Milky Way发布会

CnosDB

开源 时序数据库 CnosDB CnosDB2.4.0发布会

06 | 链表(上):如何实现LRU缓存淘汰算法

鲁米

07 | 链表(下):如何轻松写出正确的链表代码?

鲁米

DevOps|研发提效-敏捷开发之每日站立会

laofo

DevOps Scrum 敏捷开发 研发效能 每日站会

JVM C1、C2编译器

FunTester

拼版不合理案例详解

华秋电子

深入理解HarmonyOS UIAbility:生命周期、WindowStage与启动模式探析

华为云开发者联盟

鸿蒙 操作系统 华为云 HarmonyOS 华为云开发者联盟

05 | 数组:为什么很多编程语言中数组都从0开始编号

鲁米

用FATE进行图片识别的联邦学习实践_AI&大模型_彭路_InfoQ精选文章