写点什么

谷歌 AI 提出分类器视觉解释方法 StylEx,可自动检测分离的属性

  • 2022-01-28
  • 本文字数:2625 字

    阅读完需:约 9 分钟

谷歌AI提出分类器视觉解释方法StylEx,可自动检测分离的属性

神经网络可以非常出色地执行某些任务,但它们做出决策的方式——例如,图像中的哪些信号导致模型认为它属于一类而不是另一类——通常是一个谜。如果能解释神经模型的决策过程,可能会在某些领域产生重大的社会影响,例如医学图像分析和自动驾驶等;在这些领域,人工监督是至关重要的。这些见解还有助于指导医疗保健服务方、揭示模型偏差、为下游决策者提供支持,甚至能帮助科学发现过程。

 

以前对分类器进行视觉解释的方法(例如Grad-CAM这样的注意力图)会强调图像中的哪些区域影响分类结果,但它们没有解释这些区域中的哪些属性决定分类结果,例如,是它们的颜色?它们的形状?还有一类方法通过在一类和另一类之间平滑转换图像来提供解释(例如GANalyze)。然而,这些方法往往会同时改变所有属性,因此难以隔离影响个体的属性。

 

在 ICCV 2021 上发表的“Explaining in Style: Traininga GAN to explaina classifier in StyleSpace”这篇文章中,我们提出了一种视觉解释分类器的新方法。我们的方法名为 StylEx,可自动发现和可视化影响分类器的解耦(disentangled)属性。它允许通过单独操作这些属性来探索单个属性的影响(更改一个属性不会影响其他属性)。StylEx 适用于广泛的领域,包括动物、树叶、面部和视网膜图像。我们的结果表明,StylEx 找到的属性与语义属性非常吻合,可生成有意义的、特定于图像的解释,并且在用户研究中可以被人们解释。


解释猫与狗的分类器:StylEx提供了解释分类的前K个发现的解耦属性。拖动每个属性条仅操作图像中的相应属性,对象的其他属性则保持固定。


例如,要了解一个猫与狗的分类器在给定图像上的效果,StylEx 可以自动检测分离的属性,并通过可视化展示操作每个属性是如何影响分类器概率的。然后用户可以查看这些属性并对它们所代表的内容进行语义解释。例如,在上图中,可以得出“狗比猫更容易张开嘴”(上图 GIF 中的属性 #4)、“猫的瞳孔更像狭缝”(属性 #5)、“猫的耳朵不倾向于折叠”(属性 #1),等等结论。

 

下面的视频提供了该方法的简短说明:


https://youtu.be/mbrka3vBjH8

StylEx 的工作原理:训练 StyleGAN 来解释分类器


给定一个分类器和一个输入图像,我们希望找到并可视化影响其分类的各个属性。为此,我们使用了StyleGAN2架构,该架构以生成高质量图像而闻名。我们的方法包括两个阶段:

第 1 阶段:训练 StyleEx


最近的一项工作表明,StyleGAN2 包含一个名为“StyleSpace”的解耦潜在空间,其中包含训练数据集中图像的单个语义上有意义的属性。但是,由于 StyleGAN 训练不依赖于分类器,它可能无法代表那些对我们要解释的特定分类器的决策很重要的属性。因此,我们训练了一个类似于 StyleGAN 的生成器来满足分类器,从而鼓励它的 StyleSpace 适应分类器特定的属性。

 

这是用两个附加组件训练 StyleGAN 生成器来实现的。第一个是编码器,与具有重建损失的 GAN 一起训练,它强制生成的输出图像在视觉上与输入相似。这允许我们将生成器应用于任何给定的输入图像。然而,图像的视觉相似性是不够的,因为它可能不一定捕获对特定分类器(例如医学病理学)重要的细微视觉细节。为了确保这一点,我们在 StyleGAN 训练中添加了一个分类损失,它强制生成图像的分类器概率与输入图像的分类器概率相同。这保证了对分类器很重要的细微视觉细节(例如医学病理学)将包含在生成的图像中。



TrainingStyleEx:我们联合训练生成器和编码器。在生成的图像和原始图像之间应用重建损失以保持视觉相似性。在生成图像的分类器输出和原始图像的分类器输出之间应用分类损失,以确保生成器捕获对分类很重要的细微视觉细节。

第 2 阶段:提取分离的属性


训练完成后,我们会在经过训练的生成器的 StyleSpace 中搜索显著影响分类器的属性。为此,我们操纵每个 StyleSpace 坐标并测量其对分类概率的影响。我们寻求使给定图像的分类概率变化最大化的顶级属性。这样就有了 top-K 图像特定属性。通过对每个类的大量图像重复这个过程,我们可以进一步发现 top-K 类特定属性,这告诉我们分类器对特定类是如何理解的。我们称我们的端到端系统为“StylEx”。



图像特定属性提取的可视化说明:一旦训练,我们搜索对给定图像的分类概率影响最大的 StyleSpace 坐标。

StylEx 适用于广泛的领域和分类器


我们的方法适用于各种领域和分类器(二元和多类)。下面是一些特定类的解释示例。在所有测试的领域中,我们的方法检测到的顶级属性在由人类解释时对应于连贯的语义概念,并通过人类评估得到验证。

 

对于感知的性别和年龄分类器,以下是每个分类器检测到的前四个属性。我们的方法举例说明了自动选择的多个图像上的每个属性,以最好地展示该属性。对于每个属性,我们在源图像和属性操作图像之间来回切换。操作属性对分类器概率的影响程度显示在每个图像的左上角。


自动检测到的感知性别分类器的Top-4属性。


自动检测到的感知年龄分类器的Top-4属性。


请注意,我们的方法解释的是分类器,而不是现实。也就是说,该方法旨在揭示给定分类器从数据中是如何学会所利用的图像属性的;这些属性可能不一定代表现实中的类别标签(例如年轻或年长)之间的实际物理差异。特别是,这些检测到的属性可能会揭示分类器训练或数据集中的偏差,这是我们方法的另一个关键优势。它可以进一步用于提高神经网络的公平性,例如,通过增加训练数据集的示例来补偿我们的方法揭示的偏差。

 

在分类过程依赖于精细细节的领域中,将分类器损失添加到 StyleGAN 训练中是非常重要的。例如,在没有分类器损失的情况下在视网膜图像上训练的 GAN,不一定会生成与特定疾病相对应的精细病理细节。添加分类损失会导致 GAN 生成这些微妙的病理学信息作为分类器的解释。下面以视网膜图像分类器(DME疾病)和病/健康叶子分类器为例。StylEx 能够发现与疾病指标一致的属性,例如“硬渗出物”(这是众所周知的视网膜 DME 标记),以及叶子疾病的腐烂现象。


自动检测到的视网膜图像DME分类器的Top-4属性。


自动检测到的病/健康叶子图像分类器的 Top-4 属性。

 

最后,该方法也适用于多类问题,如 200 路鸟类分类器所示。



CUB-2011上训练的 200 路分类器中,自动检测到的(a)“brewer blackbird”类和(b)“yellow bellied flycatcher”类的 Top-4 属性。事实上,我们观察到 StylEx 检测到与 CUB 分类中的属性相对应的属性。

更广泛的影响和后续计划


总的来说,我们引入了一种新技术,可以为给定图像或类上的给定分类器生成有意义的解释。我们相信,我们的技术是朝着检测和缓解分类器和/或数据集中先前未知的偏差迈出的有希望的一步,符合谷歌的 AI 原则。


此外,我们对基于多属性的解释的关注是提供关于以前不透明的分类过程的新见解和帮助科学发现过程的关键。最后,我们的 GitHub存储库包括了一个 Colab 和我们论文中使用的 GAN 的模型权重。

 

原文链接:https://ai.googleblog.com/2022/01/introducing-stylex-new-approach-for.html

2022-01-28 10:431896

评论

发布
暂无评论
发现更多内容

游戏直播软件网站开发:这套源码强大功能为平台注入活力

软件开发-梦幻运营部

2024 京东零售技术年度总结

京东科技开发者

酒店有数,人间有味,伙伴有华为

脑极体

AI

Flexus云服务器X实例实践:安装Tasks.md任务管理工具

平平无奇爱好科技

基于华为云Flexus X实例部署Uptime-Kuma服务器监控面板

平平无奇爱好科技

华为云弹性云服务器FlexusX实例下的Nginx性能测试

平平无奇爱好科技

部署在线文档应用程序CodeX Docs

平平无奇爱好科技

基于Flexus X实例搭建Nginx网站服务

平平无奇爱好科技

NocoBase 本周更新汇总:详情区块联动规则

NocoBase

开源 低代码 零代码 无代码 版本更新

前端怎么做好稳定性保障体系建设?精准搞定“白虎”,不用叫“广智”!

京东科技开发者

COB LED屏幕在小间距显示时代的机遇与挑战

Dylan

cobra LED显示屏 全彩LED显示屏 led显示屏厂家 市场

Flexus云服务器X实例实践:安装SimpleMindMap思维导图工具

平平无奇爱好科技

解锁电商新境界,在华为云Flexus上快速部署并运行Magento电商系统

平平无奇爱好科技

Three.js 开发框架的主要特点

北京木奇移动技术有限公司

three.js 软件外包公司 webgl开发

广州11号线地铁智慧公厕案例:光明源智能科技的智慧创新实践

光明源智慧厕所

智慧厕所 智慧公厕

WebGL 开发框架及其分析

北京木奇移动技术有限公司

数字孪生 软件外包公司 webgl开发

API对于程序员的多元用法:从基础到实战

科普小能手

学习 编程语言 编程学习 API 接口 Python API

在Flexus X实例上安装JDK和Tomcat保姆教学

平平无奇爱好科技

WordPress部署

平平无奇爱好科技

AiBinance:觉醒的智能灵魂与去中心化狂欢

股市老人

0 Token 间间隔 100% GPU 利用率,百度百舸 AIAK 大模型推理引擎极限优化 TPS

百度Geek说

百度云 大模型、 #GPU

使用sysbench对Flexus X实例对mysql进行性能测评

平平无奇爱好科技

基于华为云Flexus云服务器X搭建部署——AI知识库问答系统(使用1panel面板安装)

平平无奇爱好科技

《CPython Internals》阅读笔记:p152-p176

codists

CPython Internals

抓住小红书上的美国人,狠劲赚一波

陆通

基于Flexus X实例安装YesPlayMusic在线音乐播放器

平平无奇爱好科技

华为云Flexus X实例性能实测:速度与稳定性的完美结合

平平无奇爱好科技

电商平台API与ERP的无缝对接:策略与实践探索

代码忍者

ERP系统 API 策略

稳定性方法论:可灰度 & 可监控 & 可回滚

京东科技开发者

部署个人知识管理系统SiyuanNote

平平无奇爱好科技

阿里云 EMR 发布托管弹性伸缩功能,支持自动调整集群大小,最高降本60%

阿里云大数据AI技术

大数据 阿里云 弹性伸缩 EMR

谷歌AI提出分类器视觉解释方法StylEx,可自动检测分离的属性_文化 & 方法_谷歌AI_InfoQ精选文章