NVIDIA 初创加速计划,免费加速您的创业启动 了解详情
写点什么

深度学习的数学(三):神经元工作的数学表示

  • 2020-04-03
  • 本文字数:2643 字

    阅读完需:约 9 分钟

深度学习的数学(三):神经元工作的数学表示

编者按:本文节选自图灵程序设计丛书 《深度学习的数学》一书中的部分章节。


前文中用数学式表示了神经元的工作。本节我们试着将其在数学上一般化。

简化神经元的图形

为了更接近神经元的形象,1 - 2 节中将神经元表示为了下图的样子。



然而,为了画出网络,需要画很多的神经元,在这种情况下上面那样的图就不合适了。因此,我们使用如下所示的简化图,这样很容易就能画出大量的神经元。



为了与生物学的神经元区分开来,我们把经过这样简化、抽象化的神经元称为 神经单元(unit)。


注:很多文献直接称为“神经元”。本书为了与生物学术语“神经元”区分,使用“神经单元”这个称呼。另外,也有文献将“神经单元”称为“人工神经元”,但是由于现在也存在生物上的人工神经元,所以本书中也不使用“人工神经元”这个称呼。

激活函数

将神经元的示意图抽象化之后,对于输出信号,我们也对其生物上的限制进行一般化。


根据点火与否,生物学上的神经元的输出 分别取值 1 和 0(下图)。



然而,如果除去“生物”这个条件,这个“0 和 1 的限制”也应该是可以解除的。这时表示点火与否的下式(1 - 2 节式 (3))就需要修正。


点火的式子:


这里, 是单位阶跃函数。我们将该式一般化,如下所示。




这里的函数 是建模者定义的函数,称为 激活函数(activation function)。 是模型允许的任意数值, 是函数 能取到的任意数值。这个式 (2) 就是今后所讲的神经网络的出发点。


注:虽然式 (2) 只考虑了 3 个输入,但这是很容易推广的。另外,式 (1) 使用的单位阶跃函数 在数学上也是激活函数的一种。


请注意,式 (2) 的输出 的取值并不限于 0 和 1,对此并没有简单的解释。一定要用生物学来比喻的话,可以考虑神经单元的“兴奋度”“反应度”“活性度”。


我们来总结一下神经元和神经单元的不同点,如下表所示。


神经元神经单元
输出值 $y$0或1模型允许的任意数值
激活函数单位阶跃函数由分析者给出,其中著名的是 Sigmoid 函数(后述)
输出的解释点火与否神经单元的兴奋度、反应度、活性度



将神经元点火的式 (1) 一般化为神经单元的激活函数式 (2),要确认这样做是否有效,就要看实际做出的模型能否很好地解释现实的数据。实际上,式 (2) 表示的模型在很多模式识别问题中取得了很好的效果。

Sigmoid 函数

激活函数的代表性例子是 Sigmoid 函数 ,其定义如下所示。


关于这个函数,我们会在后面详细讨论(2-1 节)。这里先来看看它的图形,Sigmoid 函数 的输出值是大于 0 小于 1 的任意值。此外,该函数连续、光滑,也就是说可导。这两种性质使得 Sigmoid 函数很容易处理。



单位阶跃函数的输出值为 1 或 0,表示点火与否。然而,Sigmoid 函数的输出值大于 0 小于 1,这就有点难以解释了。如果用生物学术语来解释的话,如上文中的表格所示,可以认为输出值表示神经单元的兴奋度等。输出值接近 1 表示兴奋度高,接近 0 则表示兴奋度低。



本书中将 Sigmoid 函数作为标准激活函数使用,因为它具有容易计算的漂亮性质。如果用数学上单调递增的可导函数来代替,其原理也是一样的。

偏置

再来看一下激活函数的式 (2)。


这里的 称为阈值,在生物学上是表现神经元特性的值。从直观上讲, 表示神经元的感受能力,如果 值较大,则神经元不容易兴奋(感觉迟钝),而如果值较小,则神经元容易兴奋(敏感)。


然而,式 (2) 中只有 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将 替换为


经过这样处理,式子变漂亮了,也不容易发生计算错误。这个 称为 偏置(bias)。



本书将式 (4) 作为标准使用。另外,此时的加权输入 (1-2 节)如下所示。


式 (4) 和式 (5) 是今后所讲的神经网络的出发点,非常重要。


另外,生物上的权重 和阈值 )都不是负数,因为负数在自然现象中实际上是不会出现的。然而,在将神经元一般化的神经单元中,是允许出现负数的。


问题 右图是一个神经单元。如图所示,输入 的对应权重是 2,输入 的对应权重是 3,偏置是 -1。根据下表给出的输入,求出加权输入 和输出 。注意这里的激活函数是 Sigmoid 函数。

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.1
0.60.5

结果如下表所示(式 (3) 中的 e 取 e = 2.7 进行计算)

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.12×0.2 + 3×0.1 - 1 = -0.30.43
0.60.52×0.6 + 3×0.5 - 1 = 1.70.84


备注 改写式 (5)

我们将式 (5) 像下面这样整理一下。


这里增加了一个虚拟的输入,可以理解为以常数 1 作为输入值(右图)。

于是,加权输入 可以看作下面两个向量的内积。


计算机擅长内积的计算,因此按照这种解释,计算就变容易了。


图书简介http://www.ituring.com.cn/book/2593



相关阅读


深度学习的数学(一):神经网络和深度学习


深度学习的数学(二):神经元工作的数学表示


公众号推荐:

跳进 AI 的奇妙世界,一起探索未来工作的新风貌!想要深入了解 AI 如何成为产业创新的新引擎?好奇哪些城市正成为 AI 人才的新磁场?《中国生成式 AI 开发者洞察 2024》由 InfoQ 研究中心精心打造,为你深度解锁生成式 AI 领域的最新开发者动态。无论你是资深研发者,还是对生成式 AI 充满好奇的新手,这份报告都是你不可错过的知识宝典。欢迎大家扫码关注「AI前线」公众号,回复「开发者洞察」领取。

2020-04-03 10:001164

评论

发布
暂无评论
发现更多内容

人工智能对教育和职业的双重冲击

测吧(北京)科技有限公司

测试

10.26 来 CNCC 2023 T16 展位,TDengine 精美周边等你来领!

TDengine

时序数据库 ​TDengine

AI与就业:面对未来的失业风险

测吧(北京)科技有限公司

测试

人工智能的潜在益处与风险

测吧(北京)科技有限公司

测试

访问控制中PIP的典型流程和关键点思考

权说安全

访问控制

透明格栅屏与传统LED显示屏有什么区别?透明格栅屏用在什么地方?

Dylan

产品 LED LED显示屏

区块链交易所开发

西安链酷科技

#区块链#

加速深度学习创新的引擎

百度开发者中心

大模型 LLM LLMOps

大模型训练,提升AI能力的关键

百度开发者中心

深度学习 大模型

Parallels Desktop 19 for Mac虚拟机

展初云

虚拟机 pd虚拟机 Mac安装win

安卓设备连接Mac必备的传输工具 MacDroid

展初云

AI在创新和竞争力中的关键

测吧(北京)科技有限公司

测试

文韬武略,创新无界,华为云1024程序员节精彩抢先看

华为云开发者联盟

程序员 开发者 华为云 华为云开发者联盟 华为云1024程序员节

应对全球性挑战的AI解决方案

测吧(北京)科技有限公司

测试

HarmonyOS音频开发指导:使用AudioRenderer开发音频播放功能

HarmonyOS开发者

HarmonyOS

大模型训练,提升AI能力的关键

百度开发者中心

大模型训练 LLM

培养AI领域的未来人才

测吧(北京)科技有限公司

测试

AutoCAD2024破解版下载 三维绘图软件 支持M1/M2芯片

晴雯哥

软件测试|华新学院在2022 年全国大学生“火焰杯”软件测试高校就业选拔赛取得佳绩

霍格沃兹测试开发学社

如何让大模型生成更准确、可靠的结果?

鼎道智联

GPT

四川华新学院在“火焰杯”软件测试高校就业选拔赛取得佳绩

测试人

软件测试

天下苦定制久矣,平台化建设到底难在哪里?

权说安全

零信任 统一门户

用HarmonyOS做一个可以手势控制的电子相册应用(ArkTS)

HarmonyOS开发者

HarmonyOS

人工智能改变日常生活和工作的未来

测吧(北京)科技有限公司

测试

LLM盛行下,如何高效训练大模型

百度开发者中心

大模型训练 LLM LLMOps

一种基于闭包函数实现自动化框架断言组件的设计实践 | 京东物流技术团队

京东科技开发者

闭包函数 企业号10月PK榜 测试脚本 断言组件

AI监管与政策:塑造人工智能未来

测吧(北京)科技有限公司

测试

深度学习的数学(三):神经元工作的数学表示_AI&大模型_涌井良幸,涌井贞美_InfoQ精选文章