AIGC革命已来,如何在企业场景落地?如何选择模型、怎样应用RAG、需要哪些组织流程配套? 了解详情
写点什么

数学 vs 编程,哪个才是数据科学的敲门砖?

  • 2019-11-12
  • 本文字数:2002 字

    阅读完需:约 7 分钟

数学vs编程,哪个才是数据科学的敲门砖?

数据科学其实就是一门数学、计算机、软件相关的复合型的技术,离开编程自然是无法存在的。无论是数据科学家还是数据分析师,都需要跨学科人才,必须知道如何操作代码以便告诉计算机如何分析数据。他们要比软件工程师更擅长统计学,比统计学家更擅长软件工程,需要掌握的知识有数学统计、编程能力、机器学习、研究能力等。


如果我了解机器学习算法的全部数学逻辑,但我却不能很好地进行编程,那我还有机会进入数据科学领域吗?


如果我只是勉强了解哪些机器学习算法背后的数学知识,但我可以很好地进行编程,那我有没有资格成为一名数据科学家?


我希望,在我大学毕业前努力进入数据科学领域之前就能知道这个答案是什么。


先说一下我的背景。我有数学背景,但在大学期间并没有学过多少编程课程。我在大学学过的编程语言包括 R、C++ 和 Matlab。


Matlab 并不是开源语言,主要用于研究行业。R 没有 Python 那样拥有庞大的社区,尤其是在数据科学相关的库中。C++(C 族)仍然是编程的基础。所以如果你正在学习编程的话,我还是建议你学习 C 族的语言。


当我在实习期间,Python 在这个行业使用得最多。因此,我仍然需要自己去学习 Python。此外,我就只选修了一门与数学有关的机器学习课程。


我感到有些不知所措,因为,我不仅要学习数学,同时还要提高我的编程技能。因此,当时我就在想,我应该将更多的精力放在编程上呢,还是放在学习数学上呢?

数学,还是编程?

我将分享我的观点,即在目前的行业中,哪一个实际上更受欢迎。


让我来问你一个问题。如果你是数据科学的技术主管,并且手下已经有很多博士在为你工作,同时,你还想扩大团队。现在你心目中有两个候选人,其中一个更擅长编程,另一个更擅长数学概念。那么,你会选择哪一个候选人呢?


这个问题并没有正确或错误的答案,但跟据我的观察,他们通常会喜欢在编程方面拥有更好技能的那些人。


你可能会想,为什么会是这样呢?


原因很简单,因为大多数数据科学项目的方向,都是由博士提供的,他们应该有更多的知识。因此,能够更快地实现多种方法的人,将是最后一个坚持到底的人


然后,你可能会问,都说统计是数据科学的基础,而你却告诉我,为了进入数据科学领域,只需学习如何编程就可以了?🤔


不是的,数学在数据科学中仍然非常重要。 那些更懂数学的人,将会是能够提出新想法来改进机器学习模型的那些人。


目前市场上有大量的机器学习模型。因此,知道在什么样的场景中使用哪些模型,肯定会为你节省大量时间。此外,当之前表现很好的模型,突然开始出现性能下降时,你就能找出可能的原因了。


但是,如果你只是想进入数据科学领域的话,就不需要在数学部分深入研究太多细节。数据科学并不只是关于如何推导或求解数学方程式。 更重要的是,要知道如何定义并解决业务问题


例如,你在一家电子商务公司工作。你得到一个任务,让你实现对列表进行自动分类。可能,你需要做的第一步就是定义问题,也许是说明你需要实现的时间表和正确性。下一步,你将考虑模型可能面临的一些问题,并需要澄清这些问题。


假设,如果列表名称和图片属于不同的类别,那么应该如何对列表进行分类?是按图片进行分类呢,还是按列表名称进行分类呢?


在理解了你的团队同意的标准作业程序(Standard Operating Procedure,SOP)之后,那么只有你才能启动这个项目。


回到主题,数据科学迫切需要的技能之一是分叉 GitHub 代码并在数据集上进行实验的能力。因此,如果你擅长编程的话,那么无论编程语言是什么,你都能够测试不同的方法。


例如,你正在使用给定的数据集来训练 NER(Name Entity Recognition,命名实体识别)模型。让我们想象一下,目前还没有人用 Python 在 NER 上编写代码,而唯一可用的代码,由斯坦福大学提供,用 Java 编写的。遇到这种情况应该怎么办?因此,掌握不同编程语言的知识绝对是一个加分项,这样,你就可以节省用 Python 编写整个代码的时间,以便训练模型。


另一方面,如果你深入学习机器学习的数学部分,你就会对你应该关注哪些指标更加敏感,这要取决于不同的问题。 假设你正在从事一个信用欺诈项目。你应该关注的指标就不再是正确性,而应该是 f1-score 等。因为你的目标是不仅能够识别尽可能多的欺诈案件,而且还要保持准确率。

最后的感想

在数据科学领域中,数学和编程同等重要,但如果你正考虑在数据科学领域转行或者开始你的职业生涯,我想说的是,对于各种机器学习模型来说,掌握编程技能要比深入钻研数学更为重要。


开始进行更多的实际项目,并能够在面试过程中清晰地陈述和回答问题,这肯定会增加你进军数据科学领域的机会。


进入数据科学领域可没那么容易,但请记住,不要放弃,继续努力!


你所有的努力很快就会有回报,不管有多难,要坚持你正在做的事情。


作者介绍:


Low Wei Hong 是 Shopee 的数据科学家。他的经验主要涉及网站抓取、创建数据管道以及解决业务问题的机器学习模型。


原文链接:


https://towardsdatascience.com/math-vs-coding-data-science-43e216b4f671


2019-11-12 15:431899
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 259.9 次阅读, 收获喜欢 1291 次。

关注

评论

发布
暂无评论
发现更多内容

信息化App在「左」,数字化App在「右」

Speedoooo

App 数字化 信息化

TASKCTL关于 "Fastjson反序列化远程代码执行漏洞” 的风险通告

TASKCTL

DevOps ETL算法 大数据平台 反序列化 TASKCTL

资金穿透分析

清林情报分析师

数据分析 分析软件 分析工具 资金穿透 资金分析

TiDB 6.1 发版:LTS 版本来了

PingCAP

分布式

可视化技术在 Nebula Graph 中的应用

NebulaGraph

可视化 图数据库 知识图谱

吉林长春等保测评公司有几家?详细地址在哪里?

行云管家

网络安全 等级保护 等保测评 等保测评机构 吉林

哈希彩竞猜娱乐游戏俱乐部系统开发详情

开发微hkkf5566

LoadBalance

Damon

6月月更

Flink CDC + OceanBase 全增量一体化数据集成方案

Apache Flink

大数据 flink 编程 流计算 实时计算

打造“更懂电池”的充电桩 星云股份底气何来?

E科讯

如何从零开始开发一款chrome扩展?

Jackpop

使用APICloud AVM多端框架开发消防检查助手App项目实践分享

YonBuilder低代码开发平台

APP开发 APICloud 多端开发 应用开发 avm.js

Flink CDC 在大健云仓的实践

Apache Flink

大数据 flink 编程 流计算 实时计算

庄周梦蝶终非蝶,冷静看待“谷歌AI形成人格”事件

易观分析

谷歌AI

web前端培训Vue面试题分享

@零度

Vue 前端开发

云原生中间件 — Kafka Operator 总览篇

Daocloud 道客

云原生 开源项目 消息中间件 上云 Strimzi Kafka Operator

Android技术分享| 自定义LayoutManager

anyRTC开发者

音视频 移动开发 Andriod 动画效果 LayoutManager

什么是数据流向分析?

清林情报分析师

数据分析 流向分析 数据流向 资金流向 可视化分析

字节跳动Dev Better技术沙龙来啦!参与活动赢好礼,限时免费报名中!

字节跳动终端技术

字节跳动 技术沙龙 华泰证券

理解异步

大熊G

JavaScript 前端 6月月更

如何最简单、通俗地理解Python的pandas库?

Jackpop

什么是面向对象编程?终于懂了

Jackpop

从感知智能跨越到认知智能,NLP领域要做哪些创新?

澜舟孟子开源社区

人工智能 自然语言处理 nlp 大模型 认知智能

百度评论中台的设计与探索

百度Geek说

如何使用物联网低代码平台进行系统管理?

AIRIOT

物联网 低代码开发 低代码开发平台

大数据培训Table API 和 Flink SQL的整体介绍

@零度

flink 大数据开发

新闻速递 | MobTech受邀参与华为开发者联盟沙龙,谈数据智能撬动增长

MobTech袤博科技

移动互联网 运营 精细化运营 华为开发者联盟 HDG

为了写好代码,我坚持了这8条习惯!

Jackpop

高考后,学会这种能力,让你收益终生!

图灵教育

数学 高考 数学建模

私有云和公有云的主要区别有几点?两者哪个更安全?

行云管家

云计算 公有云 私有云 企业上云 云管平台

面试官神级问题:DNS服务器是否可以加快我们的网络访问速度?

wljslmz

服务器 DNS 6月月更

数学vs编程,哪个才是数据科学的敲门砖?_大数据_Low Wei Hong_InfoQ精选文章