写点什么

宣布为 Apache MXNet 推出 ONNX 支持

  • 2019-11-06
  • 本文字数:2483 字

    阅读完需:约 8 分钟

宣布为 Apache MXNet 推出 ONNX 支持

今天,AWS 宣布推出 ONNX-MXNet,它是一种用于将 Open Neural Network Exchange (ONNX) 深度学习模型导入到 Apache MXNet 的开源 Python 程序包。MXNet 是功能齐全且可扩展的深度学习框架,可以跨 Python、Scala 和 R 等多种热门语言提供 API。通过 MXNet 的 ONNX 格式支持,开发人员可以使用 PyTorch、Microsoft Cognitive Toolkit 或 Caffe2 等其他框架构建和训练模型,然后将这些模型导入 MXNet 中运行,从而使用 MXNet 高度优化且可扩展的引擎进行推理。


我们还很激动地告诉大家,AWS 将在 ONNX 格式方面参与合作。我们将与 FacebookMicrosoft 和深度学习社区合作,进一步开发 ONNX,让深度学习从业人员都可以访问和使用它。

什么是 ONNX?

ONNX 是一种用于对深度学习模型进行编码的开源格式。ONNX 定义神经网络计算图的格式以及图中使用的大量运算符的格式。随着越来越多的框架和硬件供应商支持 ONNX,从事深度学习的开发人员可以轻松地在框架间移动,选择最适合当前任务的框架。

快速入门

我们将介绍如何使用 ONNX-MXNet 将 ONNX 模型导入 MXNet,以及如何使用导入的模型进行推理,从 MXNet 优化的执行引擎中获益。


步骤 1:安装


首先,根据 ONNX 存储库相关说明安装 ONNX。


然后,安装 ONNX-MXNet 程序包:


Bash


$ pip install onnx-mxnet
复制代码


步骤 2:准备要导入的 ONNX 模型


在此示例中,我们将演示导入 Super Resolution 模型,以增加图像的空间分辨率。此模型使用 PyTorch 构建和训练,并且使用 PyTorch 的 ONNX 导出 API 导出到 ONNX。有关模型设计的更多详情,请参阅 PyTorch 示例


将 Super Resolution ONNX 模型下载到您的工作目录:


Bash


$ wget https://s3.amazonaws.com/onnx-mxnet/examples/super_resolution.onnx
复制代码


步骤 3:将 ONNX 模型导入 MXNet


现在我们已经准备好 ONNX 模型文件,接下来让我们使用 ONNX-MXNet 导入 API 将其导入 MXNet。在 Python 外壳中运行以下代码:


Bash


import onnx_mxnetsym, params = onnx_mxnet.import_model('super_resolution.onnx')
复制代码


此代码在 Python 运行时中创建了两个实例:


sym– 模型的符号图和


params– 模型的权重。现在已完成导入 ONNX 模型,我们生成了一个标准的 MXNet 模型。


步骤 4:准备输入进行推理 ****


下一步,我们将准备输入图像用于推理。以下步骤下载示例图像,然后将其调整为模型期望的输入形状,最后将其转换为 numpy 数组。


从外壳控制台中,将示例输入图像下载到工作目录:


Bash


$ wget https://s3.amazonaws.com/onnx-mxnet/examples/super_res_input.jpg
复制代码


然后安装 Pillow (Python Imaging Library),我们便可加载和预处理输入图像:


Bash


$ pip install Pillow
复制代码


下一步,从 Python 外壳运行代码,准备 MXNet NDArray 格式的图像:


Bash


import numpy as npimport mxnet as mxfrom PIL import Imageimg = Image.open("super_res_input.jpg").resize((224, 224))img_ycbcr = img.convert("YCbCr")img_y, img_cb, img_cr = img_ycbcr.split()test_image = mx.nd.array(np.array(img_y)[np.newaxis, np.newaxis, :, :])
复制代码


步骤 5:创建 MXNet 模块


我们将使用 MXNet 模块 API 创建和绑定模块并分配加载权重。


请注意,ONNX-MXNet 导入 API 向输入层分配了名称“input_0”,我们在初始化和绑定模块时将使用该名称。


Bash


mod = mx.mod.Module(symbol=sym, data_names=['input_0'], label_names=None)mod.bind(for_training=False, data_shapes=[('input_0',test_image.shape)])mod.set_params(arg_params=params, aux_params=None)
复制代码


步骤 6:运行推理


现在我们已经加载和绑定了 MXNet 模块并分配了训练权重,我们已准备好运行推理。我们将准备单个输入批处理,并通过网络前馈:


Bash


from collections import namedtupleBatch = namedtuple('Batch', ['data'])mod.forward(Batch([test_image]))output = mod.get_outputs()[0][0][0]
复制代码


步骤 7:检查结果


现在,我们来看看对 Super Resolution 图像运行推理后收到的结果:


Bash


img_out_y = Image.fromarray(np.uint8((output.asnumpy().clip(0, 255)), mode='L'))result_img = Image.merge("YCbCr", [          img_out_y,          img_cb.resize(img_out_y.size, Image.BICUBIC),          img_cr.resize(img_out_y.size, Image.BICUBIC)]).convert("RGB")result_img.save("super_res_output.jpg")
复制代码


以下是输入图像和生成的输出图像。如您所见,该模型能够将图像空间分辨率从 256 × 256 增加到 672 × 672。


                                                  col 1                                                        |  col 2  
复制代码


:------------------------------------------------------------------------------------------------------------------:|:--------:


输入图像 | 输出图像


下一步工作?

我们正在与 ONNX 合作伙伴和社区合作,以进一步开发 ONNX,增加更实用的运算符,并扩展 ONNX-MXNet 以包括导出和更大的运算符覆盖范围。我们还将与 Apache MXNet 社区合作,将 ONNX 引入 MXNet 核心 API。

想要了解更多信息?

可在此处获得示例,它源自 ONNX-MXNet GitHub 存储库


查看 ONNX,深入探讨如何对网络图片和运算符进行编码。


欢迎贡献代码!


特别感谢 dmlc/nnvm 社区,本次实施引用了其 ONNX 代码。


Facebook 博客:


https://research.fb.com/amazon-to-join-onnx-ai-format-drive-mxnet-support/


Microsoft 博客:


https://www.microsoft.com/en-us/cognitive-toolkit/blog/2017/11/framework-support-open-ai-ecosystem-grows/


作者介绍:


**



Hagay Lupesko 是 AWS 深度学习的工程经理。**他专注于构建让开发人员和科学家能够构建智能应用程序的深度学习工具。在业余时间,他喜欢阅读、徒步旅行以及与家人共享天伦之乐。



Roshani Nagmote 是 AWS 深度学习的软件开发人员。她正在开发使所有人都可以利用深度学习的创新工具。在业余时间,她喜欢逗弄可爱的侄子,并且喜欢大型犬。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/announcing-onnx-support-for-apache-mxnet/


2019-11-06 08:00788

评论

发布
暂无评论
发现更多内容

七、高可用之故障演练

穿过生命散发芬芳

故障演练 5月月更 高可用设计

《对线面试官》Java泛型

Java3y

Java 程序员 编程语言 java 5月月更

五年谷歌ML Infra生涯,我学到最重要的3个教训

OneFlow

机器学习 深度学习 深度学习框架 MLOps Data Infra

福昕软件:用PDF辅助技术弥合阅读障碍者的数字鸿沟

联营汇聚

python处理excel文件,python xlsxwriter 一文初掌握

梦想橡皮擦

5月月更

ChunJun支持异构数据源DDL转换与自动执行 丨DTMO 02期回顾(内含课程回放+课件)

袋鼠云数栈

大数据

官宣|Apache Flink 1.15 发布公告

Apache Flink

大数据 flink 编程 流计算 实时计算

2022 开源之夏 | Serverless Devs 陪你“变得更强”

阿里巴巴云原生

阿里云 云原生 Serverless Devs 开源之夏

超级全面的设计类网址导航

小炮

OceanBase 源码解读(十):一号表及其服务寻址

OceanBase 数据库

oceanbase 源码解读

web前端培训项目的 Vite 迁移实践分析

@零度

前端开发 vite

消息队列Kafka「检索组件」重磅上线!

阿里巴巴云原生

阿里云 云原生 消息队列Kafka

STM32+华为云IOT设计的动态密码锁

DS小龙哥

5月月更

数据大屏,仅仅是数据展示吗?

葡萄城技术团队

数据分析 BI 数据可视化 数据大屏 BI分析

【刷题第一天】蜡烛之间的盘子

白日梦

5月月更

养殖场新来了个“AI管家”

华为云开发者联盟

hilens ModelArts Pro 养殖场 AI摄像头 天视通

IDC Panel:智能运维在金融行业中的场景化应用

BizSeer必示科技

Nginx 和 Nginx Plus 的区别

HoneyMoose

面试突击45:为什么要用读写锁?它有什么优点?

王磊

Java 面试

【Python】新华字典(bushi

謓泽

5月月更

Java并发机制的底层实现原理

急需上岸的小谢

5月月更

面试中被问到最多的 19 个 JavaScript 问题

海拥(haiyong.site)

JavaScript 5月月更

安全领导力| GitLab 持续位列 Gartner AST 魔力象限

极狐GitLab

安全

BI系统打包Docker镜像及容器化部署的具体实现

葡萄城技术团队

Docker 数据分析 BI BI 分析工具

Docker下的Spring Cloud三部曲之二:细说Spring Cloud开发

程序员欣宸

Java spring-cloud 5月月更

【高并发】ThreadLocal学会了这些,你也能和面试官扯皮了!

冰河

并发编程 多线程 协程 异步编程 精通高并发系列

千人千面工作台,轻松定制你的移动业务场景

BeeWorks

限时免费!六位袋鼠云数栈资深产品专家带来《数智赋能实战六讲》,欢迎报名

袋鼠云数栈

数据中台 大数据 开源

导航网站合集 | 你想要的资源它都有

小炮

SAP 电商云启用 Enterprise Product Development Visualization Integration 的配置步骤

汪子熙

angular 电商 SAP commerce 5月月更

轻量迅捷时代,Vite 与Webpack 谁赢谁输

葡萄城技术团队

前端 vite webpack 轮子

宣布为 Apache MXNet 推出 ONNX 支持_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章