写点什么

宣布为 Apache MXNet 推出 ONNX 支持

  • 2019-11-06
  • 本文字数:2483 字

    阅读完需:约 8 分钟

宣布为 Apache MXNet 推出 ONNX 支持

今天,AWS 宣布推出 ONNX-MXNet,它是一种用于将 Open Neural Network Exchange (ONNX) 深度学习模型导入到 Apache MXNet 的开源 Python 程序包。MXNet 是功能齐全且可扩展的深度学习框架,可以跨 Python、Scala 和 R 等多种热门语言提供 API。通过 MXNet 的 ONNX 格式支持,开发人员可以使用 PyTorch、Microsoft Cognitive Toolkit 或 Caffe2 等其他框架构建和训练模型,然后将这些模型导入 MXNet 中运行,从而使用 MXNet 高度优化且可扩展的引擎进行推理。


我们还很激动地告诉大家,AWS 将在 ONNX 格式方面参与合作。我们将与 FacebookMicrosoft 和深度学习社区合作,进一步开发 ONNX,让深度学习从业人员都可以访问和使用它。

什么是 ONNX?

ONNX 是一种用于对深度学习模型进行编码的开源格式。ONNX 定义神经网络计算图的格式以及图中使用的大量运算符的格式。随着越来越多的框架和硬件供应商支持 ONNX,从事深度学习的开发人员可以轻松地在框架间移动,选择最适合当前任务的框架。

快速入门

我们将介绍如何使用 ONNX-MXNet 将 ONNX 模型导入 MXNet,以及如何使用导入的模型进行推理,从 MXNet 优化的执行引擎中获益。


步骤 1:安装


首先,根据 ONNX 存储库相关说明安装 ONNX。


然后,安装 ONNX-MXNet 程序包:


Bash


$ pip install onnx-mxnet
复制代码


步骤 2:准备要导入的 ONNX 模型


在此示例中,我们将演示导入 Super Resolution 模型,以增加图像的空间分辨率。此模型使用 PyTorch 构建和训练,并且使用 PyTorch 的 ONNX 导出 API 导出到 ONNX。有关模型设计的更多详情,请参阅 PyTorch 示例


将 Super Resolution ONNX 模型下载到您的工作目录:


Bash


$ wget https://s3.amazonaws.com/onnx-mxnet/examples/super_resolution.onnx
复制代码


步骤 3:将 ONNX 模型导入 MXNet


现在我们已经准备好 ONNX 模型文件,接下来让我们使用 ONNX-MXNet 导入 API 将其导入 MXNet。在 Python 外壳中运行以下代码:


Bash


import onnx_mxnetsym, params = onnx_mxnet.import_model('super_resolution.onnx')
复制代码


此代码在 Python 运行时中创建了两个实例:


sym– 模型的符号图和


params– 模型的权重。现在已完成导入 ONNX 模型,我们生成了一个标准的 MXNet 模型。


步骤 4:准备输入进行推理 ****


下一步,我们将准备输入图像用于推理。以下步骤下载示例图像,然后将其调整为模型期望的输入形状,最后将其转换为 numpy 数组。


从外壳控制台中,将示例输入图像下载到工作目录:


Bash


$ wget https://s3.amazonaws.com/onnx-mxnet/examples/super_res_input.jpg
复制代码


然后安装 Pillow (Python Imaging Library),我们便可加载和预处理输入图像:


Bash


$ pip install Pillow
复制代码


下一步,从 Python 外壳运行代码,准备 MXNet NDArray 格式的图像:


Bash


import numpy as npimport mxnet as mxfrom PIL import Imageimg = Image.open("super_res_input.jpg").resize((224, 224))img_ycbcr = img.convert("YCbCr")img_y, img_cb, img_cr = img_ycbcr.split()test_image = mx.nd.array(np.array(img_y)[np.newaxis, np.newaxis, :, :])
复制代码


步骤 5:创建 MXNet 模块


我们将使用 MXNet 模块 API 创建和绑定模块并分配加载权重。


请注意,ONNX-MXNet 导入 API 向输入层分配了名称“input_0”,我们在初始化和绑定模块时将使用该名称。


Bash


mod = mx.mod.Module(symbol=sym, data_names=['input_0'], label_names=None)mod.bind(for_training=False, data_shapes=[('input_0',test_image.shape)])mod.set_params(arg_params=params, aux_params=None)
复制代码


步骤 6:运行推理


现在我们已经加载和绑定了 MXNet 模块并分配了训练权重,我们已准备好运行推理。我们将准备单个输入批处理,并通过网络前馈:


Bash


from collections import namedtupleBatch = namedtuple('Batch', ['data'])mod.forward(Batch([test_image]))output = mod.get_outputs()[0][0][0]
复制代码


步骤 7:检查结果


现在,我们来看看对 Super Resolution 图像运行推理后收到的结果:


Bash


img_out_y = Image.fromarray(np.uint8((output.asnumpy().clip(0, 255)), mode='L'))result_img = Image.merge("YCbCr", [          img_out_y,          img_cb.resize(img_out_y.size, Image.BICUBIC),          img_cr.resize(img_out_y.size, Image.BICUBIC)]).convert("RGB")result_img.save("super_res_output.jpg")
复制代码


以下是输入图像和生成的输出图像。如您所见,该模型能够将图像空间分辨率从 256 × 256 增加到 672 × 672。


                                                  col 1                                                        |  col 2  
复制代码


:------------------------------------------------------------------------------------------------------------------:|:--------:


输入图像 | 输出图像


下一步工作?

我们正在与 ONNX 合作伙伴和社区合作,以进一步开发 ONNX,增加更实用的运算符,并扩展 ONNX-MXNet 以包括导出和更大的运算符覆盖范围。我们还将与 Apache MXNet 社区合作,将 ONNX 引入 MXNet 核心 API。

想要了解更多信息?

可在此处获得示例,它源自 ONNX-MXNet GitHub 存储库


查看 ONNX,深入探讨如何对网络图片和运算符进行编码。


欢迎贡献代码!


特别感谢 dmlc/nnvm 社区,本次实施引用了其 ONNX 代码。


Facebook 博客:


https://research.fb.com/amazon-to-join-onnx-ai-format-drive-mxnet-support/


Microsoft 博客:


https://www.microsoft.com/en-us/cognitive-toolkit/blog/2017/11/framework-support-open-ai-ecosystem-grows/


作者介绍:


**



Hagay Lupesko 是 AWS 深度学习的工程经理。**他专注于构建让开发人员和科学家能够构建智能应用程序的深度学习工具。在业余时间,他喜欢阅读、徒步旅行以及与家人共享天伦之乐。



Roshani Nagmote 是 AWS 深度学习的软件开发人员。她正在开发使所有人都可以利用深度学习的创新工具。在业余时间,她喜欢逗弄可爱的侄子,并且喜欢大型犬。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/announcing-onnx-support-for-apache-mxnet/


2019-11-06 08:00863

评论

发布
暂无评论
发现更多内容

学习下服务器端漏洞,受益匪浅!

网络安全学海

运维 网络安全 信息安全 漏洞扫描 渗透测试·

在线条码生成器

入门小站

工具

从鉴黄师到阿里程序员,我成功逆袭上岸

Java 编程 程序员 计算机

完整视频+源码!十六天带你精通基于Spring Cloud微服务电商项目

Java架构追梦

Java 架构 面试 微服务 SpringCloud

大三就拿到字节提前批,你不想成长,生活总会逼着你成长

Java架构师迁哥

kubernetes/k8s CSI分析-容器存储接口分析

良凯尔

Kubernetes 源码分析 CSI Kubernetes Plugin #Kubernetes#

Linux之cal命令

入门小站

Linux

根据四个商业指标找到MOT

石云升

读书笔记 用户体验 商业洞察 关键时刻 7月日更

Go语言:运行时反射,深度解析!

微客鸟窝

Go 语言

阿里大牛把电商购物、电商秒杀、12306抢票、淘宝天猫各种活动的系统架构层面全部记载到这份《高并发系统架构》手册里了

Java 编程 架构 计算机

近几天fil价格暴跌:fil还有希望吗?

区块链 分布式存储 IPFS fil fil行情

加速基因测序进程,北鲲云高性能计算平台再发力

北鲲云

不要让这2个坏习惯限制了你的成长

俞凡

认知

58字节常量池面试题,你如何应对?

卢卡多多

intern 字符串 7月日更

大厂的产品研发流程,你知道么?

Simon郎

产品 研发体系 大厂 互联网公司

【Kafka技术专题】「实践操作篇」单机部署实践手册(2.8.0)

码界西柚

kafka MQ kafka配置 消息队列 kafka架构

过去几个月里面的几家大厂(美团、字节、腾讯、阿里)均拿到 offer,最终去了字节跳动

Java 编程 程序员 架构 面试

Vue进阶(七十八):Vue 定时器与 JS 定时器

No Silver Bullet

Vue 定时器 7月日更

从鉴黄师到阿里程序员,我成功拿下阿里offer

白亦杨

Java 编程 程序员 计算机

深入浅出 Java 泛型,一文搞定

猴哥一一 cium

Java 翻译 泛型

C# 三个Timer

喵叔

7月日更

Apache Druid 简介

HoneyMoose

什么是 Druid

HoneyMoose

Docker的学习体验

吴脑的键客

,docker

微观管理?

escray

学习 极客时间 朱赟的技术管理课 7月日更

我应该在什么时候使用 Apache Druid

HoneyMoose

去阿里应聘P7Java岗,都会被问到哪些问题?

Java架构师迁哥

网络攻防学习笔记 Day83

穿过生命散发芬芳

网络攻防 7月日更

如何在Go 服务中做链路追踪

Rayjun

微服务 Go 语言

模块三作业

A先生

AI解锁无人时代 仍需数据安全保驾护航

CECBC

宣布为 Apache MXNet 推出 ONNX 支持_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章