写点什么

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)

  • 2020-01-09
  • 本文字数:5875 字

    阅读完需:约 19 分钟

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)

场景概述

  • 在医学报告整理和内容提取的场景中,从业人员往往需要花费大量的时间进行内容阅读和关键字的提炼;Amazon Textract 结合 Amazon Comprehend Medical 的解决方案整体采用无服务器化架构,全自动化也提高整体效率。采用该解决方案,可以以秒级的效率提取出需要的内容;除此之外,该架构也大大降低了整体成本,架构中包含的所有服务都以实际使用计费。

  • Amazon Textract 是一个托管的 OCR(Optical Character Recognition) 服务,Amazon Comprehend Medical 是一个医疗语义分析的托管人工智能服务。通过 Amazon Textract 将医学报告和诊断报告的表单表格转化成序列化文档,通过 Amazon Comprehend Medical 对这些序列化文档进行分析并快速获取不同分类的信息。在 CRO(Clinical Research Organization) 等行业场景中,可以通过这个解决方案对医学研究、药物分析及诊断报告提供有效的帮助和补充。

服务架构

  • 在这个架构中,我们需要创建:

  • 一个 Amazon S3 存储桶用来存放输入的文档资料和输出的结果文件

  • 一个用来调用 Amazon Textract API 的 AWS Lambda 函数

  • 一个用来调用 Amazon Comprehend Medical API 的 AWS Lambda 函数



架构逻辑如下:


  1. 以用户向 Amazon S3 传入一个文档为例,上传成功后 AWS Lambda 函数会以该事件作为触发并调用 Amazon Textract API,将该文档内容提取成序列化的文档以及待分析的文本,并存入 Amazon S3 的相应路径

  2. 上述待分析文本传入 Amazon S3 后,又会触发下一个 AWS Lambda 函数,调用 Amazon Comprehend Medical API,对内容进行语义分析,并将分析后的结果写入 Amazon S3

  3. 完成以上自动化的操作后,用户即可查询读取提炼后的内容进行进一步的工作

具体实现

Amazon S3 存储桶配置

  • 创建用于输入和输出医学分析报告的存储桶和桶下面相应目录,例如:

  • 存储桶:s3://medical-report-analysis-<unique_identifier>

  • 这里的<unique_identifier> 用以和其他用户的 S3 存储桶区分,因为 Amazon S3 存储桶的名称具有全球唯一性

  • 文档输入目录:s3://medical-report-analysis-<unique_identifier>/input

  • 手动检查目录:s3://medical-report-analysis-<unique_identifier>/manual

  • 分析输入目录:s3://medical-report-analysis-<unique_identifier>/medical

  • 保护数据目录:s3://medical-report-analysis-<unique_identifier>/phi

  • 原始文档目录:s3://medical-report-analysis-<unique_identifier>/raw

  • 分析结果目录:s3://medical-report-analysis-<unique_identifier>/result



  • 启用 Amazon S3 的版本控制

AWS IAM 权限配置

由于整体技术实现会通过 AWS Lambda 作为粘合剂将几个服务串联起来,所以需要创建相应的 AWS IAM 角色以确保服务之间有权限进行相互调用;以下会创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role,以及用于串接 Amazon S3 和 Amazon Comprehend Medical 的 AWS IAM Role:


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Policy:

  2. 策略名称:LAMBDA_TEXTRACT_S3_RW

  3. 策略文档:


Python


{  "Version": "2012-10-17",  "Statement": [    {      "Effect": "Allow",      "Action": [        "textract:*",        "s3:*",        "cloudwatch:*",        "logs:*",        "iam:GetPolicy",        "iam:GetPolicyVersion",        "iam:GetRole"      ],      "Resource": "*"    },    {      "Effect": "Allow",      "Action": "iam:CreateServiceLinkedRole",      "Resource": "arn:aws:iam::*:role/aws-service-role/events.amazonaws.com/AWSServiceRoleForCloudWatchEvents*",      "Condition": {        "StringLike": {          "iam:AWSServiceName": "events.amazonaws.com"        }      }    }  ]}
复制代码


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role:

  2. 受信任实体:Lambda

  3. 绑定策略:LAMBDA_TEXTRACT_S3_RW

  4. 角色名称:LAMBDA_TEXTRACT_S3_RW_ALL

  5. 创建用于串接 Amazon S3 和 Amazon Comprehend Medical 的 AWS IAM Policy:

  6. 策略名称:LAMBDA_COMPREHENDMEDICAL_S3_RW

  7. 策略文档:


Python


{  "Version": "2012-10-17",  "Statement": [    {      "Effect": "Allow",      "Action": [        "comprehendmedical:*",        "s3:*",        "cloudwatch:*",        "logs:*",        "iam:GetPolicy",        "iam:GetPolicyVersion",        "iam:GetRole"      ],      "Resource": "*"    },    {      "Effect": "Allow",      "Action": "iam:CreateServiceLinkedRole",      "Resource": "arn:aws:iam::*:role/aws-service-role/events.amazonaws.com/AWSServiceRoleForCloudWatchEvents*",      "Condition": {        "StringLike": {          "iam:AWSServiceName": "events.amazonaws.com"        }      }    }  ]}
复制代码


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role:

  2. 受信任实体:Lambda

  3. 绑定策略:LAMBDA_COMPREHENDMEDICAL_S3_RW

  4. 角色名称:LAMBDA_COMPREHENDMEDICAL_S3_RW_ALL

AWS Lambda 函数 – textract_content_ingest

  1. 函数名称:textract_content_ingest

  2. 运行时:Python 3.8

  3. 执行角色:LAMBDA_TEXTRACT_S3_RW_ALL

  4. 内存分配:1024 MB

  5. 超时:1 分钟

  6. 代码如下:


Python


import boto3import json
def lambda_handler(event, context): # File definition s3Key = event['Records'][0]['s3']['object']['key'] keyName = s3Key.split('/')[1].split('.')[0] outFile = '/tmp/output.json' outputKey = 'raw/' + keyName + '/raw.json' medicalRaw = "/tmp/medicalraw.txt" medicalRawKey = 'raw/' + keyName + '/medicalraw.txt' medicalReport = '/tmp/medicalreport.txt' medicalReportKey = 'medical/' + keyName + '/medicalreport.txt'
# S3 and Textract Configuration s3Bucket = event['Records'][0]['s3']['bucket']['name'] fileType = 'FORMS'
# Call Textract to convert form to json textract = boto3.client('textract') textractResponse = textract.analyze_document( Document={ 'S3Object': { 'Bucket': s3Bucket, 'Name': s3Key } }, FeatureTypes=[ fileType ] ) with open(outFile, 'w') as outfile: outfile.write(json.dumps(textractResponse, indent=4))
# Ingest content for blocks in textractResponse['Blocks'][1:]: if blocks['Confidence']: if (blocks['Confidence'] >= 70) and (blocks['BlockType'] == 'LINE'): with open(medicalReport, 'a') as medicalReportOut: medicalReportOut.write(blocks['Text'] + "\r\n") elif (blocks['Confidence'] >= 70) and (blocks['BlockType'] == 'WORD'): with open(medicalRaw, 'a') as medicalRawOut: medicalRawOut.write(blocks['Text'] + "\r\n") else: continue else: print("oops")
# Upload outputs to s3 s3 = boto3.resource('s3') try: s3.meta.client.upload_file(outFile, s3Bucket, outputKey) s3.meta.client.upload_file(medicalReport, s3Bucket, medicalReportKey) s3.meta.client.upload_file(medicalRaw, s3Bucket, medicalRawKey) except Exception as e: print(e) print("Upload failed!") else: print("Upload done!")
复制代码

AWS Lambda 函数 – comprehendmedical_analysis

  1. 函数名称:comprehendmedical_analysis

  2. 运行时:Python 3.8

  3. 执行角色:LAMBDA_COMPREHENDMEDICAL_S3_RW_ALL

  4. 内存分配:1024 MB

  5. 超时:1 分钟

  6. 代码如下:


Python


import boto3import json
def lambda_handler(event, context): # Configure definition s3Bucket = event['Records'][0]['s3']['bucket']['name'] s3Key = event['Records'][0]['s3']['object']['key'] keyName = s3Key.split('/')[1].split('.')[0] localFinal = '/tmp/result.txt' phiFinal = '/tmp/phi.txt' manualFinal = '/tmp/manual.txt' medicalResult = 'result/' + keyName + '/medicalresult.txt' phiResult = 'phi/' + keyName + '/phi.txt' manualResult = 'manual/' + keyName + '/manual.txt'
# Ingest medical report try: s3 = boto3.client('s3') except Exception as e: print(e) print('connect S3 failed!') else: print('connect S3 successfully')
s3_object = s3.get_object(Bucket=s3Bucket, Key=s3Key) body = s3_object['Body']
# Execute medical analysis try: comprehendMedical = boto3.client('comprehendmedical') except Exception as e: print(e) else: print('connect Comprehend Medical successfully')
detectEntities = comprehendMedical.detect_entities_v2( Text=body.read().decode('utf-8') ) detectOutputRaw = detectEntities['Entities']
# Categorize different types of information report_ANATOMY = [] report_MEDICAL_CONDITION = [] report_MEDICATION = [] report_PROTECTED_HEALTH_INFORMATION = [] report_TEST_TREATMENT_PROCEDURE = [] report_MANUAL = []
for ctgy in detectOutputRaw: if ctgy['Score'] >= 0.6: if ctgy['Category'] == 'ANATOMY': report_ANATOMY.append(ctgy) elif ctgy['Category'] == 'MEDICAL_CONDITION': report_MEDICAL_CONDITION.append(ctgy) elif ctgy['Category'] == 'MEDICATION': report_MEDICATION.append(ctgy) elif ctgy['Category'] == 'PROTECTED_HEALTH_INFORMATION': report_PROTECTED_HEALTH_INFORMATION.append(ctgy) elif ctgy['Category'] == 'TEST_TREATMENT_PROCEDURE': report_TEST_TREATMENT_PROCEDURE.append(ctgy) else: continue else: report_MANUAL.append(ctgy)
result_ANATOMY = [] result_MEDICAL_CONDITION = [] result_MEDICATION = [] result_PROTECTED_HEALTH_INFORMATION = [] result_TEST_TREATMENT_PROCEDURE = [] result_MANUAL = []
if report_ANATOMY: for anatomy in report_ANATOMY: result_ANATOMY.append(anatomy['Text']) if report_MEDICAL_CONDITION: for medical_condition in report_ANATOMY: result_MEDICAL_CONDITION.append(medical_condition['Text']) if report_MEDICATION: for medication in report_MEDICATION: result_MEDICATION.append(medication['Text']) if report_PROTECTED_HEALTH_INFORMATION: for protected_health_information in report_PROTECTED_HEALTH_INFORMATION: result_PROTECTED_HEALTH_INFORMATION.append(protected_health_information['Text']) if report_TEST_TREATMENT_PROCEDURE: for test_treatment_procedure in report_TEST_TREATMENT_PROCEDURE: result_TEST_TREATMENT_PROCEDURE.append(test_treatment_procedure['Text']) if report_MANUAL: for test_manual in report_MANUAL: result_MANUAL.append(test_manual['Text'])
with open(localFinal, 'a') as localfile: if result_ANATOMY: localfile.write('Anatomy:\r\n' + '\r\n'.join(set(result_ANATOMY))) if result_MEDICAL_CONDITION: localfile.write('\r\n---\r\n') localfile.write('Medical Condition:\r\n' + '\r\n'.join(set(result_MEDICAL_CONDITION))) if result_MEDICATION: localfile.write('\r\n---\r\n') localfile.write('Medication:\r\n' + '\r\n'.join(set(result_MEDICATION))) if result_TEST_TREATMENT_PROCEDURE: localfile.write('\r\n---\r\n') localfile.write('Test Treatment Procedure:\r\n' + '\r\n'.join(set(result_TEST_TREATMENT_PROCEDURE))) localfile.close()
with open(phiFinal, 'a') as phifile: if result_PROTECTED_HEALTH_INFORMATION: phifile.write('Protected Health Information:\r\n' + '\r\n'.join(set(result_PROTECTED_HEALTH_INFORMATION))) phifile.close()
with open(manualFinal, 'a') as manualfile: if result_MANUAL: manualfile.write('Manually Check:\r\n' + '\r\n'.join(set(result_MANUAL))) manualfile.close()
# Upload outputs to s3 s3Upload = boto3.resource('s3') try: s3Upload.meta.client.upload_file(localFinal, s3Bucket, medicalResult) s3Upload.meta.client.upload_file(phiFinal, s3Bucket, phiResult) s3Upload.meta.client.upload_file(manualFinal, s3Bucket, manualResult)
except Exception as e: print(e) print("Upload failed!") else: print("Upload done!")
复制代码

Amazon S3 事件与 AWS Lambda 集成

  1. 使用拥有 Amazon S3 管理权限的用户登录 AWS 管理控制台

  2. 进入到相应的 Amazon S3 存储桶 (medical-report-analysis-<unique_identifier>)

  3. 切换到“属性”选项卡,点开“事件”

  4. 点击“添加通知”,输入名称“upload_report”,事件勾选 “PUT”,前缀处输入 “input/”,发送到选择 AWS Lambda,选择函数 textract_content_ingest,然后选择保存

  5. 点击“添加通知”,输入名称“comprehendmedical_analysis”,事件勾选 “PUT”,前缀处输入 “medical/”,发送到选择 AWS Lambda,选择函数 comprehendmedical_analysis,然后选择保存


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/serverless-medical-document-analysis-with-amazon-textract-and-amazon-comprehend-medical/


2020-01-09 15:571124

评论

发布
暂无评论
发现更多内容

淘宝内测新内容社区淘宝逛逛:邀请B站UP主入驻打造流量池

石头IT视角

YOLODet 最强PyTorch版的YOLOv5、YOLOv4、PP-YOLO、YOLOv3复现

wuzhihao7788

学习 AI 目标追踪

甲方日常 43

句子

工作 随笔杂谈 日常

架构师训练营第七周作业

邓昀垚

嵌入式的我们为什么要学ROS

良知犹存

ROS

SpringBoot-技术专题-war包项目外置配置文件

码界西柚

让容器应用管理更快更安全,Dragonfly 发布 Nydus 容器镜像加速服务

阿里云基础软件团队

云原生

想不通(关于人生的突发奇想)

干啥啥不行的赢

数据库JDBC:PreparedStatement

正向成长

JDBC SQL预处理 PrepareStatement

音视频社交的应用和优势

anyRTC开发者

音视频 WebRTC 语音 直播 RTC

百万年薪技术大佬的读书之旅

四猿外

Java 书籍推荐 书单 书单推荐 书籍

专业级沙箱与恶意样本的自动化分析

京东科技开发者

云计算 监控 虚拟化

聊点缓存——Part 1

姜雨生

redis 缓存

OpenShift 4 监控技术栈解析

东风微鸣

Kubernetes Prometheus openshift 可观察性 Thanos

DDIA 读书笔记(4)多节点数据复制方案

莫黎

读书笔记

搞定秒杀,只需要这几步!!

架构师修行之路

缓存 分布式 微服务 秒杀

Java9 新特性 - 下篇

hepingfly【gzh:和平本记】

Java 新特性

目标检测之YOLOv1

Dreamer

AI 科学家带你快速 Get 人工智能最热技术

京东科技开发者

人工智能

YOLODet--YOLO系列网络结构图(YOLOv5,YOLOv4,PPYOLO,YOLOv3)

wuzhihao7788

学习 AI 目标追踪

芯片破壁者(十九):显卡的战国与帝国

脑极体

巨建华:区块链+金融的难点

CECBC

区块链 金融

程序员面试题为什么出得天花乱坠,实际工作中这些根本用不到?

Java架构师迁哥

一站式低延迟直播连麦解决方案

anyRTC开发者

音视频 WebRTC 直播 RTC sdk

马云被约谈,阿里大数据的羹怎么分给每一个人?

CECBC

区块链 大数据

图解 | 不得错过的Binder浅析(一)

哈利迪

android

【面经】面试官:做过性能优化的工作吗?你会从哪些方面入手做性能优化呢?

冰河

面试 性能优化 JVM 高并发 高性能

复盘逆袭之路!三个月时间深造,怒斩拼多多、字节、蚂蚁金服破50W年薪Offer(含自学路线图)

Java架构追梦

Java 学习 架构 面试 数据结构与算法

智能驾驶看湘江:中国智能网联汽车产业的“长沙样本”

脑极体

区块链是未来数字经济标志性的发明技术

CECBC

区块链 数字经济

Amdocs收购OPENET:关于5G应用落地的思考

VoltDB

大数据 数据分析 5G 物联网

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)_行业深度_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章