写点什么

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)

  • 2020-01-09
  • 本文字数:5875 字

    阅读完需:约 19 分钟

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)

场景概述

  • 在医学报告整理和内容提取的场景中,从业人员往往需要花费大量的时间进行内容阅读和关键字的提炼;Amazon Textract 结合 Amazon Comprehend Medical 的解决方案整体采用无服务器化架构,全自动化也提高整体效率。采用该解决方案,可以以秒级的效率提取出需要的内容;除此之外,该架构也大大降低了整体成本,架构中包含的所有服务都以实际使用计费。

  • Amazon Textract 是一个托管的 OCR(Optical Character Recognition) 服务,Amazon Comprehend Medical 是一个医疗语义分析的托管人工智能服务。通过 Amazon Textract 将医学报告和诊断报告的表单表格转化成序列化文档,通过 Amazon Comprehend Medical 对这些序列化文档进行分析并快速获取不同分类的信息。在 CRO(Clinical Research Organization) 等行业场景中,可以通过这个解决方案对医学研究、药物分析及诊断报告提供有效的帮助和补充。

服务架构

  • 在这个架构中,我们需要创建:

  • 一个 Amazon S3 存储桶用来存放输入的文档资料和输出的结果文件

  • 一个用来调用 Amazon Textract API 的 AWS Lambda 函数

  • 一个用来调用 Amazon Comprehend Medical API 的 AWS Lambda 函数



架构逻辑如下:


  1. 以用户向 Amazon S3 传入一个文档为例,上传成功后 AWS Lambda 函数会以该事件作为触发并调用 Amazon Textract API,将该文档内容提取成序列化的文档以及待分析的文本,并存入 Amazon S3 的相应路径

  2. 上述待分析文本传入 Amazon S3 后,又会触发下一个 AWS Lambda 函数,调用 Amazon Comprehend Medical API,对内容进行语义分析,并将分析后的结果写入 Amazon S3

  3. 完成以上自动化的操作后,用户即可查询读取提炼后的内容进行进一步的工作

具体实现

Amazon S3 存储桶配置

  • 创建用于输入和输出医学分析报告的存储桶和桶下面相应目录,例如:

  • 存储桶:s3://medical-report-analysis-<unique_identifier>

  • 这里的<unique_identifier> 用以和其他用户的 S3 存储桶区分,因为 Amazon S3 存储桶的名称具有全球唯一性

  • 文档输入目录:s3://medical-report-analysis-<unique_identifier>/input

  • 手动检查目录:s3://medical-report-analysis-<unique_identifier>/manual

  • 分析输入目录:s3://medical-report-analysis-<unique_identifier>/medical

  • 保护数据目录:s3://medical-report-analysis-<unique_identifier>/phi

  • 原始文档目录:s3://medical-report-analysis-<unique_identifier>/raw

  • 分析结果目录:s3://medical-report-analysis-<unique_identifier>/result



  • 启用 Amazon S3 的版本控制

AWS IAM 权限配置

由于整体技术实现会通过 AWS Lambda 作为粘合剂将几个服务串联起来,所以需要创建相应的 AWS IAM 角色以确保服务之间有权限进行相互调用;以下会创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role,以及用于串接 Amazon S3 和 Amazon Comprehend Medical 的 AWS IAM Role:


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Policy:

  2. 策略名称:LAMBDA_TEXTRACT_S3_RW

  3. 策略文档:


Python


{  "Version": "2012-10-17",  "Statement": [    {      "Effect": "Allow",      "Action": [        "textract:*",        "s3:*",        "cloudwatch:*",        "logs:*",        "iam:GetPolicy",        "iam:GetPolicyVersion",        "iam:GetRole"      ],      "Resource": "*"    },    {      "Effect": "Allow",      "Action": "iam:CreateServiceLinkedRole",      "Resource": "arn:aws:iam::*:role/aws-service-role/events.amazonaws.com/AWSServiceRoleForCloudWatchEvents*",      "Condition": {        "StringLike": {          "iam:AWSServiceName": "events.amazonaws.com"        }      }    }  ]}
复制代码


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role:

  2. 受信任实体:Lambda

  3. 绑定策略:LAMBDA_TEXTRACT_S3_RW

  4. 角色名称:LAMBDA_TEXTRACT_S3_RW_ALL

  5. 创建用于串接 Amazon S3 和 Amazon Comprehend Medical 的 AWS IAM Policy:

  6. 策略名称:LAMBDA_COMPREHENDMEDICAL_S3_RW

  7. 策略文档:


Python


{  "Version": "2012-10-17",  "Statement": [    {      "Effect": "Allow",      "Action": [        "comprehendmedical:*",        "s3:*",        "cloudwatch:*",        "logs:*",        "iam:GetPolicy",        "iam:GetPolicyVersion",        "iam:GetRole"      ],      "Resource": "*"    },    {      "Effect": "Allow",      "Action": "iam:CreateServiceLinkedRole",      "Resource": "arn:aws:iam::*:role/aws-service-role/events.amazonaws.com/AWSServiceRoleForCloudWatchEvents*",      "Condition": {        "StringLike": {          "iam:AWSServiceName": "events.amazonaws.com"        }      }    }  ]}
复制代码


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role:

  2. 受信任实体:Lambda

  3. 绑定策略:LAMBDA_COMPREHENDMEDICAL_S3_RW

  4. 角色名称:LAMBDA_COMPREHENDMEDICAL_S3_RW_ALL

AWS Lambda 函数 – textract_content_ingest

  1. 函数名称:textract_content_ingest

  2. 运行时:Python 3.8

  3. 执行角色:LAMBDA_TEXTRACT_S3_RW_ALL

  4. 内存分配:1024 MB

  5. 超时:1 分钟

  6. 代码如下:


Python


import boto3import json
def lambda_handler(event, context): # File definition s3Key = event['Records'][0]['s3']['object']['key'] keyName = s3Key.split('/')[1].split('.')[0] outFile = '/tmp/output.json' outputKey = 'raw/' + keyName + '/raw.json' medicalRaw = "/tmp/medicalraw.txt" medicalRawKey = 'raw/' + keyName + '/medicalraw.txt' medicalReport = '/tmp/medicalreport.txt' medicalReportKey = 'medical/' + keyName + '/medicalreport.txt'
# S3 and Textract Configuration s3Bucket = event['Records'][0]['s3']['bucket']['name'] fileType = 'FORMS'
# Call Textract to convert form to json textract = boto3.client('textract') textractResponse = textract.analyze_document( Document={ 'S3Object': { 'Bucket': s3Bucket, 'Name': s3Key } }, FeatureTypes=[ fileType ] ) with open(outFile, 'w') as outfile: outfile.write(json.dumps(textractResponse, indent=4))
# Ingest content for blocks in textractResponse['Blocks'][1:]: if blocks['Confidence']: if (blocks['Confidence'] >= 70) and (blocks['BlockType'] == 'LINE'): with open(medicalReport, 'a') as medicalReportOut: medicalReportOut.write(blocks['Text'] + "\r\n") elif (blocks['Confidence'] >= 70) and (blocks['BlockType'] == 'WORD'): with open(medicalRaw, 'a') as medicalRawOut: medicalRawOut.write(blocks['Text'] + "\r\n") else: continue else: print("oops")
# Upload outputs to s3 s3 = boto3.resource('s3') try: s3.meta.client.upload_file(outFile, s3Bucket, outputKey) s3.meta.client.upload_file(medicalReport, s3Bucket, medicalReportKey) s3.meta.client.upload_file(medicalRaw, s3Bucket, medicalRawKey) except Exception as e: print(e) print("Upload failed!") else: print("Upload done!")
复制代码

AWS Lambda 函数 – comprehendmedical_analysis

  1. 函数名称:comprehendmedical_analysis

  2. 运行时:Python 3.8

  3. 执行角色:LAMBDA_COMPREHENDMEDICAL_S3_RW_ALL

  4. 内存分配:1024 MB

  5. 超时:1 分钟

  6. 代码如下:


Python


import boto3import json
def lambda_handler(event, context): # Configure definition s3Bucket = event['Records'][0]['s3']['bucket']['name'] s3Key = event['Records'][0]['s3']['object']['key'] keyName = s3Key.split('/')[1].split('.')[0] localFinal = '/tmp/result.txt' phiFinal = '/tmp/phi.txt' manualFinal = '/tmp/manual.txt' medicalResult = 'result/' + keyName + '/medicalresult.txt' phiResult = 'phi/' + keyName + '/phi.txt' manualResult = 'manual/' + keyName + '/manual.txt'
# Ingest medical report try: s3 = boto3.client('s3') except Exception as e: print(e) print('connect S3 failed!') else: print('connect S3 successfully')
s3_object = s3.get_object(Bucket=s3Bucket, Key=s3Key) body = s3_object['Body']
# Execute medical analysis try: comprehendMedical = boto3.client('comprehendmedical') except Exception as e: print(e) else: print('connect Comprehend Medical successfully')
detectEntities = comprehendMedical.detect_entities_v2( Text=body.read().decode('utf-8') ) detectOutputRaw = detectEntities['Entities']
# Categorize different types of information report_ANATOMY = [] report_MEDICAL_CONDITION = [] report_MEDICATION = [] report_PROTECTED_HEALTH_INFORMATION = [] report_TEST_TREATMENT_PROCEDURE = [] report_MANUAL = []
for ctgy in detectOutputRaw: if ctgy['Score'] >= 0.6: if ctgy['Category'] == 'ANATOMY': report_ANATOMY.append(ctgy) elif ctgy['Category'] == 'MEDICAL_CONDITION': report_MEDICAL_CONDITION.append(ctgy) elif ctgy['Category'] == 'MEDICATION': report_MEDICATION.append(ctgy) elif ctgy['Category'] == 'PROTECTED_HEALTH_INFORMATION': report_PROTECTED_HEALTH_INFORMATION.append(ctgy) elif ctgy['Category'] == 'TEST_TREATMENT_PROCEDURE': report_TEST_TREATMENT_PROCEDURE.append(ctgy) else: continue else: report_MANUAL.append(ctgy)
result_ANATOMY = [] result_MEDICAL_CONDITION = [] result_MEDICATION = [] result_PROTECTED_HEALTH_INFORMATION = [] result_TEST_TREATMENT_PROCEDURE = [] result_MANUAL = []
if report_ANATOMY: for anatomy in report_ANATOMY: result_ANATOMY.append(anatomy['Text']) if report_MEDICAL_CONDITION: for medical_condition in report_ANATOMY: result_MEDICAL_CONDITION.append(medical_condition['Text']) if report_MEDICATION: for medication in report_MEDICATION: result_MEDICATION.append(medication['Text']) if report_PROTECTED_HEALTH_INFORMATION: for protected_health_information in report_PROTECTED_HEALTH_INFORMATION: result_PROTECTED_HEALTH_INFORMATION.append(protected_health_information['Text']) if report_TEST_TREATMENT_PROCEDURE: for test_treatment_procedure in report_TEST_TREATMENT_PROCEDURE: result_TEST_TREATMENT_PROCEDURE.append(test_treatment_procedure['Text']) if report_MANUAL: for test_manual in report_MANUAL: result_MANUAL.append(test_manual['Text'])
with open(localFinal, 'a') as localfile: if result_ANATOMY: localfile.write('Anatomy:\r\n' + '\r\n'.join(set(result_ANATOMY))) if result_MEDICAL_CONDITION: localfile.write('\r\n---\r\n') localfile.write('Medical Condition:\r\n' + '\r\n'.join(set(result_MEDICAL_CONDITION))) if result_MEDICATION: localfile.write('\r\n---\r\n') localfile.write('Medication:\r\n' + '\r\n'.join(set(result_MEDICATION))) if result_TEST_TREATMENT_PROCEDURE: localfile.write('\r\n---\r\n') localfile.write('Test Treatment Procedure:\r\n' + '\r\n'.join(set(result_TEST_TREATMENT_PROCEDURE))) localfile.close()
with open(phiFinal, 'a') as phifile: if result_PROTECTED_HEALTH_INFORMATION: phifile.write('Protected Health Information:\r\n' + '\r\n'.join(set(result_PROTECTED_HEALTH_INFORMATION))) phifile.close()
with open(manualFinal, 'a') as manualfile: if result_MANUAL: manualfile.write('Manually Check:\r\n' + '\r\n'.join(set(result_MANUAL))) manualfile.close()
# Upload outputs to s3 s3Upload = boto3.resource('s3') try: s3Upload.meta.client.upload_file(localFinal, s3Bucket, medicalResult) s3Upload.meta.client.upload_file(phiFinal, s3Bucket, phiResult) s3Upload.meta.client.upload_file(manualFinal, s3Bucket, manualResult)
except Exception as e: print(e) print("Upload failed!") else: print("Upload done!")
复制代码

Amazon S3 事件与 AWS Lambda 集成

  1. 使用拥有 Amazon S3 管理权限的用户登录 AWS 管理控制台

  2. 进入到相应的 Amazon S3 存储桶 (medical-report-analysis-<unique_identifier>)

  3. 切换到“属性”选项卡,点开“事件”

  4. 点击“添加通知”,输入名称“upload_report”,事件勾选 “PUT”,前缀处输入 “input/”,发送到选择 AWS Lambda,选择函数 textract_content_ingest,然后选择保存

  5. 点击“添加通知”,输入名称“comprehendmedical_analysis”,事件勾选 “PUT”,前缀处输入 “medical/”,发送到选择 AWS Lambda,选择函数 comprehendmedical_analysis,然后选择保存


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/serverless-medical-document-analysis-with-amazon-textract-and-amazon-comprehend-medical/


2020-01-09 15:57993

评论

发布
暂无评论
发现更多内容

北京市十一学校×火山引擎:全球AI少年齐聚北京,以代码会友

新消费日报

科研环境配置太麻烦?Pixi 一站式帮你搞定!

肩塔didi

人工智能 rust cuda 包管理 科研

SIEM解决方案怎么选?企业必看的7大核心功能解析

运维有小邓

日志分析 日志管理 SIEM

【架构革命】LinkedIn也无法拯救的Kafka:Pulsar 的存算分离成了终极答案?

AscentStream

kafka pulsar linkedin

Pixi vs Conda:7 个让我切换到 Pixi 的理由

肩塔didi

人工智能 机器学习 GitHub

迈向 AI 驱动的数据平台新时代

Databend

深度剖析银狐APT攻击链,最终载荷竟是致命远控

塞讯科技

网络安全 信息技术 APT攻击 安全验证

GPT-5多模态与情境感知AI技术解析

qife122

人工智能 企业应用

ROPE 阅读苏神博客有感

antonio

蒸馏大型语言模型并超越其性能

qife122

机器学习 模型蒸馏

华为阅读独家首发《金字塔在中国:古埃及文明大展炼成记》精品书

最新动态

MySQL事务原理:从ACID到隔离级别的全解析

秃头小帅oi

dMSA 滥用 (BadSuccessor) 导致权限升级:使用 ADAudit Plus 监控关键属性更改

运维有小邓

日志审计 AD域审计

无监督训练在NLP中的价值体现

qife122

自然语言处理 词元化

家用机器人指令跟随训练新数据集发布

qife122

人工智能 数据集

用 Pixi 管理 Python 项目:打通Conda 和 PyPI 的边界

肩塔didi

机器学习 开源 rust pip conda

YashanDB TRUNC函数

YashanDB

数据库

Milvus + n8n:通过分析GitHub文档打造垂直领域的智能问答

阿里云大数据AI技术

GitHub Milvus n8n 智能问答

优化DeepSpeed ZeRO在低成本硬件上的运行效率

qife122

分布式训练 GPU加速

防止NLP模型更新中的性能回退技术解析

qife122

机器学习 模型优化

Awesome Claude Code 资源大全

qife122

开发工具 Claude-Code

YashanDB UNISTR函数

YashanDB

数据库

拆解Agent如何实现“听懂→规划→搞定”全流程

测吧(北京)科技有限公司

人工智能 软件测试 测试开发 agent

行业热点丨智能仿真时代:电子工程多物理场解决方案创新实践

Altair RapidMiner

AI 仿真 PCB CAE 电子工程

通过模糊测试发现燃料虚拟机中定价错误的操作码

qife122

模糊测试 燃料虚拟机

YashanDB TREAT函数

YashanDB

数据库

工程师团队如何打造4K流媒体设备的创新技术

qife122

无线系统设计 天线创新

行星文化上线华为音乐,沉浸遨游张杰的音乐宇宙

最新动态

🔥Grok 4 永久免费!深度测评:优势短板一次说清

GPU算力

马斯克 openai grok gpt-5 xAI

YashanDB TRIM函数

YashanDB

数据库

YashanDB TYPEOF函数

YashanDB

数据库

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)_行业深度_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章