限时领|《AI 百问百答》专栏课+实体书(包邮)! 了解详情
写点什么

谷歌用深度学习诊断前列腺癌准确率达 70%,高于人类病理专家

  • 2018-11-19
  • 本文字数:2667 字

    阅读完需:约 9 分钟

谷歌用深度学习诊断前列腺癌准确率达70%,高于人类病理专家

AI 前线导读: 在美国,最常见的男性癌症是前列腺癌,约九分之一的男性可能在一生中患上这种疾病。然而,这种常见疾病的病变通常不易被察觉,这让确诊癌症是否对患者构成足够风险,以采取相应的治疗手段(如前列腺切除术或放射疗法)变得十分有挑战性。划分前列腺癌患者“风险层级”的关键因素是 Gleason grade,这种方法根据在显微镜下观察切片与正常前列腺的相似程度对癌细胞进行分类。


更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)


然而,尽管其临床重要性被广泛认可,但 Gleason 对前列腺癌的分级非常复杂和主观,研究报告显示,病理学家对前列腺癌分级的分歧达 30-53%[1] [2]。此外,全球范围内,受过足够专业训练病理学家非常缺乏,特别是在美国以外。而且,最新的指导方法还建议病理学家在最终报告中报告肿瘤不同 Gleason 图像的百分比,这增加了病理学家的工作量,成为他们的另一个主观挑战[3]。总体而言,这些问题表明,使用基于深度学习的模型来改善前列腺癌的诊断和临床管理很有必要,就像谷歌和其他公司已经证明的,使用这些技术可以改善转移性乳腺癌检测的潜力一样。


在《用于改善前列腺癌 Gleason 评分的深度学习算法开发和验证”一文中(https://arxiv.org/abs/1811.06497), 我们探索了深度学习是否可以在前列腺切除术试验中提高列腺癌 Gleason 分级的准确性和客观性。我们开发了一种深度学习系统(DLS),它首先模仿病理学家的工作流程,将幻灯片中的每个区域分类为不同的 Gleason pattern,底部的图案对应于更接近正常前列腺的肿瘤。然后,DLS 根据目前存在的两种最常见的 Gleason pattern 总结整个 Gleason 评分组(http://pathology.jhu.edu/ProstateCancer/NewGradingSystem.pdf)。等级越高,代表进一步发展成癌症的风险越大,患者越有可能从及早治疗中受益。



Gleason pattern 的视觉演示,Gleason 系统使用它们对前列腺癌进行分级。基于癌症与正常前列腺组织的接近程度,单个癌症斑块被定性为特定的 Gleason pattern,等级越高,患癌的风险越大。图像来源:国立卫生研究院。


为了开发和验证 DLS 系统,我们收集了前列腺切除术案例的去识别图像,使用了包含临床中最常用的针芯活组织检查在内的方法检查前列腺癌。在训练数据上,我们使用了 32 名病理学家提供的 Gleason pattern 详细注释(超过 1.12 亿张注释图像)和每张图像的整体 Gleason 评分组。为了克服先前在 Gleason 分级中提到的变异性,验证集中的每个载玻片由 3 至 5 名一般病理学家(从 29 名病理学家中选择)独立评分,并且由一名泌尿生殖专家病理学家进行最终的 Gleason 评分,以获得该幻灯片最真实的标签。


在本文中,我们的 DLS 总体准确度达到了 70%,而据调查显示,美国董事会认证的普通病理学家的诊断平均准确度仅为 61%。在 10 名进行样本评分的病理学专家中,DLS 比其中 8 位的检测结果更精确。在 Gleason pattern 定量方面,DLS 也比病理学家更准确。Gleason 分级的进步能够进行更精确的临床风险分层:DLS 能够比普通病理学家更精准地预测患者手术后疾病复发的风险,使医生能够利用这些信息更好地为患者进行治疗。



DLS 与病理学家的评分表现比较。 a:比较 DLS 的准确性(红色)与 29 名病理学家(绿色)的平均准确度。误差条表明置信区间为 95%。b:DLS、29 名病理学家和泌尿生殖专家病理学家提供的风险分层比较。根据他们的 Gleason 评分组将患者分为低风险组和高风险组,风险组的 Kaplan-Meier 曲线之间距离越大,表示分层越准确。


我们还发现,DLS 能够表征位于两个 Gleason pattern 尖端的组织形态,这是病理学家们观察到的 Gleason 分级不一致的原因之一,这表明,DLS 可以为前列腺癌创建更细粒度的“精确分级”。虽然这些位于中间的 pattern(例如 Gleason pattern 3.3 或 3.7)临床意义尚不清楚,但 DLS 的精确度提高将有助于进一步研究这个有趣的问题。



评估 DLS 的区域级别分类。a:来自 3 位病理学家的注释与 DLS 预测相比较。病理学家对肿瘤区域的位置和范围一般没有异议,却在 Gleason pattern 分层上分歧较大。每个区域的 DLS 精确 Gleason pattern 通过在 Gleason pattern 3(绿色),4(黄色)和 5(红色)的 DLS 预测模式之间进行插值来表示。b:在 4100 万张带注释的测试图像集中比较 DLS 预测模式与病理学家 Gleason pattern 分类的分布。在病理学家意见不一致的斑块上,组织更可能处于两个图案的尖端,DLS 的预测分数反映了这种模糊性。


虽然这些初步结果令人鼓舞,但在可以用来改善前列腺癌患者的护理之前,像 DLS 这样的系统,还有很多工作要做。首先,可以通过增加更多的训练数据进一步提高模型的准确性,并在数量更大、更多样化的患者中进行验证。此外,我们正在改进 DLS 系统进行针芯活组织检查,在患者决定接受手术之前进行诊断,让 Gleason 评分对临床决策发挥更大的影响。我们还需要进一步评估如何更好地将 DLS 整合到病理学家的诊断工作流程中,以及这种人工智能技术在临床实践中对 Gleason 分级的整体效率、准确性和预测能力的影响有多大。尽管如此,我们仍为这类技术改善癌症诊断和患者护理的潜力感到兴奋。


References


  1. Interobserver Variability in Histologic Evaluation of Radical Prostatectomy Between Central and Local Pathologists: Findings of TAX 3501 Multinational Clinical TrialNetto, G. J., Eisenberger, M., Epstein, J. I. & TAX 3501 Trial Investigators, Urology 77, 1155–1160 (2011).

  2. Phase 3 Study of Adjuvant Radiotherapy Versus Wait and See in pT3 Prostate Cancer: Impact of Pathology Review on AnalysisBottke, D., Golz, R., Störkel, S., Hinke, A., Siegmann, A., Hertle, L., Miller, K., Hinkelbein, W., Wiegel, T., Eur. Urol. 64, 193–198 (2013).

  3. Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens, Sauter, G. Steurer, S., Clauditz, T. S., Krech, T., Wittmer, C., Lutz, F., Lennartz, M., Janssen, T., Hakimi, N., Simon, R., von Petersdorff-Campen, M., Jacobsen, F., von Loga, K., Wilczak, W., Minner, S., Tsourlakis, M. C., Chirico, V., Haese, A., Heinzer, H., Beyer, B., Graefen, M., Michl, U., Salomon, G., Steuber, T., Budäus, L. H., Hekeler, E., Malsy-Mink, J., Kutzera, S., Fraune, C., Göbel, C., Huland, H., Schlomm, T., Clinical Eur. Urol. 69, 592–598 (2016).


原文链接:


https://ai.googleblog.com/2018/11/improved-grading-of-prostate-cancer.html


2018-11-19 16:031509

评论

发布
暂无评论
发现更多内容

如何使用堆栈算出两个链表的总和?

InfoQ IT百科

Kubernetes 中数据包的生命周期 -- 第 2 部分

Se7en

2021年阿里、腾讯、百度

爱好编程进阶

Java 面试 后端开发

操作系统国产化的难点是什么?

InfoQ IT百科

“迈向元宇宙的一小步”鲁班会开发者深度论坛落地北京

华为云开发者联盟

音视频 opengauss 华为云 元宇宙 鲁班会

axios发送post请求,springMVC接收不到数据问题

爱好编程进阶

Java 面试 后端开发

ClassUtils常用方法总结

爱好编程进阶

Java 面试 后端开发

3 个方法,教你提升程序员的自我价值

爱好编程进阶

Java 面试 后端开发

如何在没有递归的情况下通过对给定二叉树执行中序遍历来打印所有节点?

InfoQ IT百科

如何在给定数组中执行二元搜索?

InfoQ IT百科

如何实现冒泡排序算法(bubble sort algorithm)?

InfoQ IT百科

Elasticsearch 中为什么选择倒排索引而不选择 B 树索引

爱好编程进阶

Java 面试 后端开发

Flink SQL Client综合实战

爱好编程进阶

Java 面试 后端开发

1000页神仙文档,连阿里P8面试官都说太详细了,面面俱到!搞懂这些直接P6+

爱好编程进阶

Java 面试 后端开发

Activiti 自定义表单流程(全流程演示)

爱好编程进阶

Java 面试 后端开发

Bootstrap Table数据表格的使用指南

爱好编程进阶

Java 面试 后端开发

35K成功入职蚂蚁金服,现分享面试Java后端经历「内含面试题

爱好编程进阶

Java 面试 后端开发

disruptor笔记之一:快速入门

爱好编程进阶

Java 面试 后端开发

1000道阿里巴巴初级~高级Java工程师面试题(含答案

爱好编程进阶

Java 面试 后端开发

在没有递归的情况下如何反转单链表?

InfoQ IT百科

2021最新一次Java面试,快手三面一轮游,如今已拿意向书

爱好编程进阶

Java 面试 后端开发

GPU微架构回顾

Finovy Cloud

GPU服务器 GPU算力

162基于springboot宠物管理系统

爱好编程进阶

Java 面试 后端开发

2021最新Java面试标准,26个技术点一千多道面试题全曝光,赶紧学

爱好编程进阶

Java 面试 后端开发

浅析Redis分布式集群倾斜问题

五分钟学大数据

redis 4月月更

如何实现迭代快速排序算法(iterative quicksort algorithm)?

InfoQ IT百科

在不使用任何库的情况下,如何反转给定句子中的单词?

InfoQ IT百科

CDH+Kylin三部曲之二:部署和设置

爱好编程进阶

Java 面试 后端开发

Dubbo如何处理业务异常,这个一定要知道哦!

爱好编程进阶

Java 面试 后端开发

5年crud“经验”

爱好编程进阶

Java 面试 后端开发

与操作系统性能最相关的组件是什么?

InfoQ IT百科

谷歌用深度学习诊断前列腺癌准确率达70%,高于人类病理专家_AI&大模型_谷歌博客_InfoQ精选文章