写点什么

谷歌用深度学习诊断前列腺癌准确率达 70%,高于人类病理专家

  • 2018-11-19
  • 本文字数:2667 字

    阅读完需:约 9 分钟

谷歌用深度学习诊断前列腺癌准确率达70%,高于人类病理专家

AI 前线导读: 在美国,最常见的男性癌症是前列腺癌,约九分之一的男性可能在一生中患上这种疾病。然而,这种常见疾病的病变通常不易被察觉,这让确诊癌症是否对患者构成足够风险,以采取相应的治疗手段(如前列腺切除术或放射疗法)变得十分有挑战性。划分前列腺癌患者“风险层级”的关键因素是 Gleason grade,这种方法根据在显微镜下观察切片与正常前列腺的相似程度对癌细胞进行分类。


更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)


然而,尽管其临床重要性被广泛认可,但 Gleason 对前列腺癌的分级非常复杂和主观,研究报告显示,病理学家对前列腺癌分级的分歧达 30-53%[1] [2]。此外,全球范围内,受过足够专业训练病理学家非常缺乏,特别是在美国以外。而且,最新的指导方法还建议病理学家在最终报告中报告肿瘤不同 Gleason 图像的百分比,这增加了病理学家的工作量,成为他们的另一个主观挑战[3]。总体而言,这些问题表明,使用基于深度学习的模型来改善前列腺癌的诊断和临床管理很有必要,就像谷歌和其他公司已经证明的,使用这些技术可以改善转移性乳腺癌检测的潜力一样。


在《用于改善前列腺癌 Gleason 评分的深度学习算法开发和验证”一文中(https://arxiv.org/abs/1811.06497), 我们探索了深度学习是否可以在前列腺切除术试验中提高列腺癌 Gleason 分级的准确性和客观性。我们开发了一种深度学习系统(DLS),它首先模仿病理学家的工作流程,将幻灯片中的每个区域分类为不同的 Gleason pattern,底部的图案对应于更接近正常前列腺的肿瘤。然后,DLS 根据目前存在的两种最常见的 Gleason pattern 总结整个 Gleason 评分组(http://pathology.jhu.edu/ProstateCancer/NewGradingSystem.pdf)。等级越高,代表进一步发展成癌症的风险越大,患者越有可能从及早治疗中受益。



Gleason pattern 的视觉演示,Gleason 系统使用它们对前列腺癌进行分级。基于癌症与正常前列腺组织的接近程度,单个癌症斑块被定性为特定的 Gleason pattern,等级越高,患癌的风险越大。图像来源:国立卫生研究院。


为了开发和验证 DLS 系统,我们收集了前列腺切除术案例的去识别图像,使用了包含临床中最常用的针芯活组织检查在内的方法检查前列腺癌。在训练数据上,我们使用了 32 名病理学家提供的 Gleason pattern 详细注释(超过 1.12 亿张注释图像)和每张图像的整体 Gleason 评分组。为了克服先前在 Gleason 分级中提到的变异性,验证集中的每个载玻片由 3 至 5 名一般病理学家(从 29 名病理学家中选择)独立评分,并且由一名泌尿生殖专家病理学家进行最终的 Gleason 评分,以获得该幻灯片最真实的标签。


在本文中,我们的 DLS 总体准确度达到了 70%,而据调查显示,美国董事会认证的普通病理学家的诊断平均准确度仅为 61%。在 10 名进行样本评分的病理学专家中,DLS 比其中 8 位的检测结果更精确。在 Gleason pattern 定量方面,DLS 也比病理学家更准确。Gleason 分级的进步能够进行更精确的临床风险分层:DLS 能够比普通病理学家更精准地预测患者手术后疾病复发的风险,使医生能够利用这些信息更好地为患者进行治疗。



DLS 与病理学家的评分表现比较。 a:比较 DLS 的准确性(红色)与 29 名病理学家(绿色)的平均准确度。误差条表明置信区间为 95%。b:DLS、29 名病理学家和泌尿生殖专家病理学家提供的风险分层比较。根据他们的 Gleason 评分组将患者分为低风险组和高风险组,风险组的 Kaplan-Meier 曲线之间距离越大,表示分层越准确。


我们还发现,DLS 能够表征位于两个 Gleason pattern 尖端的组织形态,这是病理学家们观察到的 Gleason 分级不一致的原因之一,这表明,DLS 可以为前列腺癌创建更细粒度的“精确分级”。虽然这些位于中间的 pattern(例如 Gleason pattern 3.3 或 3.7)临床意义尚不清楚,但 DLS 的精确度提高将有助于进一步研究这个有趣的问题。



评估 DLS 的区域级别分类。a:来自 3 位病理学家的注释与 DLS 预测相比较。病理学家对肿瘤区域的位置和范围一般没有异议,却在 Gleason pattern 分层上分歧较大。每个区域的 DLS 精确 Gleason pattern 通过在 Gleason pattern 3(绿色),4(黄色)和 5(红色)的 DLS 预测模式之间进行插值来表示。b:在 4100 万张带注释的测试图像集中比较 DLS 预测模式与病理学家 Gleason pattern 分类的分布。在病理学家意见不一致的斑块上,组织更可能处于两个图案的尖端,DLS 的预测分数反映了这种模糊性。


虽然这些初步结果令人鼓舞,但在可以用来改善前列腺癌患者的护理之前,像 DLS 这样的系统,还有很多工作要做。首先,可以通过增加更多的训练数据进一步提高模型的准确性,并在数量更大、更多样化的患者中进行验证。此外,我们正在改进 DLS 系统进行针芯活组织检查,在患者决定接受手术之前进行诊断,让 Gleason 评分对临床决策发挥更大的影响。我们还需要进一步评估如何更好地将 DLS 整合到病理学家的诊断工作流程中,以及这种人工智能技术在临床实践中对 Gleason 分级的整体效率、准确性和预测能力的影响有多大。尽管如此,我们仍为这类技术改善癌症诊断和患者护理的潜力感到兴奋。


References


  1. Interobserver Variability in Histologic Evaluation of Radical Prostatectomy Between Central and Local Pathologists: Findings of TAX 3501 Multinational Clinical TrialNetto, G. J., Eisenberger, M., Epstein, J. I. & TAX 3501 Trial Investigators, Urology 77, 1155–1160 (2011).

  2. Phase 3 Study of Adjuvant Radiotherapy Versus Wait and See in pT3 Prostate Cancer: Impact of Pathology Review on AnalysisBottke, D., Golz, R., Störkel, S., Hinke, A., Siegmann, A., Hertle, L., Miller, K., Hinkelbein, W., Wiegel, T., Eur. Urol. 64, 193–198 (2013).

  3. Utility of Quantitative Gleason Grading in Prostate Biopsies and Prostatectomy Specimens, Sauter, G. Steurer, S., Clauditz, T. S., Krech, T., Wittmer, C., Lutz, F., Lennartz, M., Janssen, T., Hakimi, N., Simon, R., von Petersdorff-Campen, M., Jacobsen, F., von Loga, K., Wilczak, W., Minner, S., Tsourlakis, M. C., Chirico, V., Haese, A., Heinzer, H., Beyer, B., Graefen, M., Michl, U., Salomon, G., Steuber, T., Budäus, L. H., Hekeler, E., Malsy-Mink, J., Kutzera, S., Fraune, C., Göbel, C., Huland, H., Schlomm, T., Clinical Eur. Urol. 69, 592–598 (2016).


原文链接:


https://ai.googleblog.com/2018/11/improved-grading-of-prostate-cancer.html


2018-11-19 16:031559

评论

发布
暂无评论
发现更多内容

数据库原理及MySQL应用 | 约束

TiAmo

主键约束 数据库· 12月月更

优化器核心技术—Join Reorder

KaiwuDB

跑付活动:跑付南宁(联营)健身服务中心盛大开业

极客天地

超详细图文保姆级教程:App开发新手入门(三)

YonBuilder低代码开发平台

云原生媒体基础设施为华为云桌面护航

科技怪授

YonBuilder移动开发平台 AVM框架 封装身份证号码虚拟输入键盘组件

YonBuilder低代码开发平台

运维自动化之Kubernetes 云原生CICD部署管理系统

大V

golang DevOps CI/CD kubernetes 运维 webssh

培训大数据技术后的职业规划介绍

小谷哥

华为云桌面,如何让云上办公变得高效、安全?

i生活i科技

希捷发布2023年数据市场趋势预测,指引企业数据决策

极客天地

一键导出Gerber文件教学实操,我设计的PCB再也没出过问题!

华秋PCB

工具 PCB PCB设计

华为儿童手表5X系列“腕上学习天地”全新升级,首月0元畅享华为教育中心精品内容

最新动态

一文告诉你如何选择低代码供应商?

YonBuilder低代码开发平台

AI 2022:浪潮奔涌,百舸争流

Baihai IDP

人工智能 AI 年终总结 AI 2022

超详细图文保姆级教程:App开发新手入门(四)

YonBuilder低代码开发平台

华为云桌面,助你畅享高清视觉体验!

科技怪授

无代码优缺点及发展前景

间隔

统信软件高级工程师:关于云原生技术在容器方面的应用介绍 | 龙蜥技术

OpenAnolis小助手

云原生 容器技术 龙蜥大讲堂 统信软件 开源领域

疫情放开,户外全彩LED屏发展趋势

Dylan

LED display LED显示屏 户外LED显示屏

如何使用YonBuilder进行报表分析?

YonBuilder低代码开发平台

手把手教你玩转 Excel 数据透视表

葡萄城技术团队

数据分析 Excel 数据可视化 数据透视表 可视化数据

适合前端程序员培训的人群有哪些

小谷哥

银行如何快速落地营销数字化?

中关村科金

人工智能 大数据 AI 数字化转型 数字化

启科QuSaaS真随机数解决方案与Amazon Braket结合实践

启科量子开发者官方号

人工智能 量子计算 随机数

一文读懂什么是低代码开发?

YonBuilder低代码开发平台

YonBuilder应用构建教程之移动端基础配置

YonBuilder低代码开发平台

YonBuilder移动开发 AVM框架 封装虚拟数字键盘组件

YonBuilder低代码开发平台

企业想要智慧化办公,首选华为云桌面Workspace!

科技怪授

内存多维数据分析引擎

元年技术洞察

大数据 数据中台 数字化转型 多维数据库

为什么NoSQL数据库这么受欢迎?

腾讯云数据库

数据库 nosql 腾讯云数据库

大数据参加培训学习靠谱吗?

小谷哥

谷歌用深度学习诊断前列腺癌准确率达70%,高于人类病理专家_AI&大模型_谷歌博客_InfoQ精选文章