写点什么

AWS 与微软合作发布 Gluon API 可快速构建机器学习模型

  • 2017-10-18
  • 本文字数:1422 字

    阅读完需:约 5 分钟

2017 年 10 月 12 日, AWS 与微软合作发布了 Gluon 开源项目,该项目旨在帮助开发者更加简单快速的构建机器学习模型,同时保留了较好的性能。

根据 Gluon 项目官方 Github 页面上的描述,Gluon API 支持任意一种深度学习框架,其相关规范已经在 Apache MXNet 项目中实施,开发者只需安装最新版本的 MXNet(master)即可体验。AWS 用户可以创建一个AWS Deep Learning AMI 进行体验。

该页面提供了一段简易使用说明,摘录如下:

本教程以一个两层神经网络的构建和训练为例,我们将它称呼为多层感知机(multilayer perceptron)。(本示范建议使用Python 3.3 或以上,并且使用 Jupyter notebook 来运行。详细教程可参考这个页面。)

首先,进行如下引用声明:

复制代码
import mxnet as mx
from mxnet import gluon, autograd, ndarray
import numpy as np

然后,使用gluon.data.DataLoader承载训练数据和测试数据。这个 DataLoader 是一个 iterator 对象类,非常适合处理规模较大的数据集。

复制代码
train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=lambda data, label: (data.astype(np.float32)/255, label)),
batch_size=32, shuffle=True)
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=lambda data, label: (data.astype(np.float32)/255, label)),
batch_size=32, shuffle=False)

接下来,定义神经网络:

复制代码
# 先把模型做个初始化
net = gluon.nn.Sequential()
# 然后定义模型架构
with net.name_scope():
net.add(gluon.nn.Dense(128, activation="relu")) # 第一层设置 128 个节点
net.add(gluon.nn.Dense(64, activation="relu")) # 第二层设置 64 个节点
net.add(gluon.nn.Dense(10)) # 输出层

然后把模型的参数设置一下:

复制代码
# 先随机设置模型参数
# 数值从一个标准差为 0.05 正态分布曲线里面取
net.collect_params().initialize(mx.init.Normal(sigma=0.05))
# 使用 softmax cross entropy loss 算法
# 计算模型的预测能力
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# 使用随机梯度下降算法 (sgd) 进行训练
# 并且将学习率的超参数设置为 .1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

之后就可以开始跑训练了,一共分四个步骤。一、把数据放进去;二、在神经网络模型算出输出之后,比较其与实际结果的差距;三、用 Gluon 的autograd计算模型各参数对此差距的影响;四、用 Gluon 的trainer方法优化这些参数以降低差距。以下我们先让它跑 10 轮的训练:

复制代码
epochs = 10
for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(mx.cpu()).reshape((-1, 784))
label = label.as_in_context(mx.cpu())
with autograd.record(): # Start recording the derivatives
output = net(data) # the forward iteration
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(data.shape[0])
# Provide stats on the improvement of the model over each epoch
curr_loss = ndarray.mean(loss).asscalar()
print("Epoch {}. Current Loss: {}.".format(e, curr_loss))

若想了解更多 Gluon 说明与用法,可以查看 gluon.mxnet.io 这个网站。

2017-10-18 20:242122

评论

发布
暂无评论
发现更多内容

喜报,喜报!MO 荣获六个年度大奖!

MatrixOrigin

数据库 云原生 分布式,

2024年中国(北京)国际智能锁产品展会

秋硕展览

一款高输出电流 PWM 转换器

芯动大师

这份攻略帮助你分分钟构建出“幻兽帕鲁游戏”极致体验

极狐GitLab

大模型+影像:智能手机“上春山”

脑极体

AI

员工活动 | 并肩携手,温暖前行

MatrixOrigin

数据库 云原生 分布式,

OpenLDAP 接入 NineData SSO

NineData

SSO openldap 单点登录 NineData phpLDAPadmin

《数字化运维路线图》第四部分-数字化运维转型场景 震撼发布!

博睿数据

文心一言 VS 讯飞星火 VS chatgpt (199)-- 算法导论15.2 1题

福大大架构师每日一题

福大大架构师每日一题

2024年工业展|2024越南国际工业技术装备展会

秋硕展览

新型储能|储能电站|2024山西国际储能产业展会

秋硕展览

Java 构造函数与修饰符详解:初始化对象与控制权限

小万哥

Java 程序人生 编程语言 软件工程 后端开发

链接Web3和公链的中间件Smart Layer (SLN)是什么

币离海

strk SLN pixel Smart Layer

SDWAN组网基于软件,部署灵活且周期短

Geek一起出海

博睿数据率先发布HarmonyOS NEXT系统的应用异常观测SDK

博睿数据

4家券商综合评级上升,1月券商App终端业务体验评测报告发布

博睿数据

全新市场周期推动 LaunchPad 迎新起点, Penpad 成新兴生力军

西柚子

分布式存储技术:总结2023,展望2024

黄岩

分布式存储 zstorage 全闪分布式

2024太阳能产品展|2024山西国际供热采暖展会

秋硕展览

数据价值在线化,TiDB 在企查查数据中台的应用

编程猫

万字干货-京东零售数据资产能力升级与实践

京东零售技术

大数据 数据资产

喜报!博睿数据荣获中信银行2023年度优秀服务伙伴奖

博睿数据

龙年大吉,新的一年开启你的职业飞跃之旅

亚马逊云科技 (Amazon Web Services)

架构师 亚马逊云科技 培训与认证

京东app商品详情数据接口

tbapi

京东 京东商品详情接口 京东API 京东APP商品详情接口

跃迁:从普通到卓越的成长路径

老张

个人成长

80% 的学校还在给新生上 C 语言,是它们 OUT 了吗?

算法的秘密

代码人生

AWS与微软合作发布Gluon API 可快速构建机器学习模型_微软_sai_InfoQ精选文章