写点什么

Quora 文本语境演进分析

  • 2015-12-21
  • 本文字数:1876 字

    阅读完需:约 6 分钟

通常,人们提出的问题反映了人们在一个特定的时期内最感兴趣的内容。这可以是新近上映的电影的情节,也可以是对即将到来的总统大选的预测。近日,Quora 数据科学家陶雯雯撰文介绍了他们如何运用自然语言处理(NLP)技术从提交到 Quora 的问题中挖掘用户感兴趣的内容。他们的主要研究成果如下:

  • 识别特定时期内与当时事件紧密相关的单词,其中的主要挑战是处理问题集中的自然语言数据。通过选定恰当的问题集合,并关注特定词性的单词,他们使用标准 NLP 技术 TF-IDF 获得了一个令人信服的单词集合。
  • 综合运用专门为自然语言数据而设计的统计检验和基于图的聚簇技术,他们可以发现能够强有力地代表特定 Quora 历史时期的单词语境。这样,关于一个单词为什么对于特定的历史时期而言非常重要,他们就能够自动提取更多的信息。
  • 他们还能够识别出这些语境如何随时间演进,而这可以让他们从 Quora 的讨论中看到更广泛的世界中人、企业和事件的关系。

本文接下来将分别介绍上述三个方面的内容。

按季度识别最有代表性的单词

由于他们最感兴趣的内容是提问者所提的问题是关于什么主题的,所以他们使用词性标注来过滤问题文本中的关键词,并且只保留名词。此外,考虑到不同国家的人有不同的背景、文化和兴趣,他们根据提问者的国籍划分了问题集合。

选取最有代表性的单词有许多方法,最简单的是根据词频排序,但这种方法无法排除常用词。为此,他们选择了 TF-IDF 方法。在具体实现上,TF 为单词在特定国家特定季度的非匿名问题中出现的次数,IDF 为单词在特定国家所有问题中出现的次数,减去该单词在特定国家特定季度的非匿名问题中出现的次数,公式如下:

其中,Q 表示特定季度,W 表示特定单词。

该方法可以提供合理的结果,但为了提高所识别出的单词和当时事件的相关性,他们对识别出的单词进行了进一步的过滤。例如,只保留在特定季度里被三个提问者使用过的单词。另外,去掉 NLTK 中定义的停用词以及在 NLTK Brown 语料库中出现超过 10 次的单词。下图是进一步过滤排序后生成的一个“单词云(word cloud)”示例:

(美国,2011 年第 2 季度)

在 2011 年,Quora 刚刚在硅谷成立,最具代表性的单词大多数与重大技术和政治事件相关。例如,近场通信(NFC)服务推动了移动支付的广泛应用,人们在预测 Groupon、Zynga 和 Yelp 的 IPO,等等。

代表性单词的语义语境

对于单词云中的单词的代表性,有的很容易解释,有的并不明显。为此,他们基于单词共现频率设计了一种自动提取单词语境的方法。与生成单词云的过程相比,他们使用了一个更大的单词集合:去掉了停用词,但并没有去掉名词之外的其他单词,也没有限制单个提问者使用某个单词的次数。他们按照如下条件对单词对进行了过滤:

  • 最少共同出现了 4 次;

  • 共现次数超期望值,即

  • 随机共现的概率小于 5%。

其中,为单词 A 和 B 实际的共现次数,N 为非匿名问题的数量,()为出现单词 A(B)的问题的数量。使用这些规则,他们构建了一个图,顶点表示单词,边连接满足上述条件的单词对。对于每条边,他们使用下面的公式赋予一个权值:

通过这种方法,他们识别出图的连通部分,并命名为“语义簇(semantic clusters)”。那些包含最有代表性单词的语义簇是他们重点关注的。下图是一个语义簇示例:

(美国,2011 年第 2 季度)

该语义簇表示,Facebook 在 2011 年 6 月推出了研究 Facebook 社交图谱的工具 Graph API Explorer

单词关系随时间演进

在生成单词语义簇之后,他们进一步研究了单词语境随时间的演进。他们从多个季度中选取了最具代表性的单词,他们称为“关注词(focus word)”。对于每个单词 A 及每个与 A 关联的单词 B,他们使用前文定义的 f(A,B)计算两者在 2012 年到 2015 年之间不同季度里的共现频率指标。接下来,他们就使用这些值分析单词之间关联关系随时间的变化情况。下图是一个单词语境演进示例:

(关注词:Obama)

可以看出,在 2012 年总统大选之前,Barack Obama 经常和 Mitt Romney 一起被提及,而在 2013 年 8 月前后同 Syria 相关的问题更显著了。

总之,他们使用 NLP 技术分析问题文本,提取最有代表性的单词,并使用单词云的形式将它们可视化。然后,他们使用语义聚簇方法识别出相关度较高的一组组单词,即语义簇。最后,他们分析了一个单词的语境如何随着时间变化。更多示例和参考文献,请查看原文


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2015-12-21 18:002327
用户头像

发布了 1008 篇内容, 共 447.3 次阅读, 收获喜欢 346 次。

关注

评论

发布
暂无评论
发现更多内容

DTC补货实战:从算法到落地

观远数据

人工智能 BI DTC

DataEase 启动异常如何解决:Access denied for user 'root'@'xx.xx.xx.xxx' (using password YES)

搞大屏的小北

DataEase

一体化移动办公平台,让政企工作更轻松、更便捷

BeeWorks

英雄互娱|提升 300% !一次性能优化实战记录

观测云

可观测性 可观测 观测云 可观测性用观测云

2023最新版网络安全保姆级指南,从0基础进阶网络攻防工程师

网络安全学海

运维 网络安全 信息安全 渗透测试 漏洞挖掘

CMAE 结合对比学习和掩码,提高表征辨别力

Zilliz

WorkPlus即时通讯软件,专注于企业信息安全可靠的企业IM

BeeWorks

得物商家客服桌面端Electron技术实践

得物技术

node.js 前端 前端架构 Electron 客户端开发

新增模型服务、训练记录、源代码关联追溯,助力模型全生命周期管理|ModelWhale 版本更新

ModelWhale

人工智能 机器学习 云计算 数据分析 编程建模

英特尔锐炫DX9,DX11,DX12游戏性能持续提升,个别游戏高达87%

科技之家

《数字经济全景白皮书》后疫情时代数字化驱动增长洞察之赛道篇

易观分析

数字经济 数智化转型

ONES 加入中国信通院云上软件工程社区,推动软件提质发展

万事ONES

持续耕耘显卡市场,英特尔锐炫驱动重大升级

科技之家

营销大数据如何帮助企业深入了解客户-镭速

镭速

微盟全链路压测:如何帮助电商业务实现10倍性能提升?

TakinTalks稳定性社区

泰山众筹4.0sun模式开发系统技术

薇電13242772558

智能合约

【知识点】如何快速开发、部署 Serverless 应用?

Serverless Devs

开年直播 | 博睿数据创始人兼CTO对话InfoQ,聊聊2023年重要战略技术趋势:可观测性

博睿数据

可观测性 博睿数据 媒体声音

一文读懂SCADA系统的组件功能及应用

2D3D前端可视化开发

组态软件 工业组态软件 web组态软件 SCADA

SR锁存器与D锁存器设计与建模

timerring

FPGA

函数计算|如何使用层解决依赖包问题?

Serverless Devs

音频编辑服务UI SDK接入指导及常见问题

HarmonyOS SDK

HMS Core

高密度 ARM 服务器如何引领“数智时代”发展,打通“智变质变”正循环

GPU算力

深度学习 并行计算 arm架构 高性能计算 ARM服务器

DawnSql完美超越微服务

陈飞

Kratos微服务框架实现权鉴 - Zanzibar

golang 微服务 鉴权 Kratos Docker 镜像

低代码开发平台 打开数字化转型普惠之门

力软低代码开发平台

可变二维码,玩转“码”上时代

旺链科技

区块链 区块链技术 区块链溯源

微软提出 TinyMIM,首次用掩码预训练改进小型 ViT

Zilliz

Quora文本语境演进分析_语言 & 开发_谢丽_InfoQ精选文章