写点什么

百度跨平台 AI 推理加速引擎:Anakin

  • 2018-07-31
  • 本文字数:2741 字

    阅读完需:约 9 分钟

一、前言

AI 技术包含训练和推理两个阶段。推理阶段的性能好坏既关系到用户体验,又关系到企业的服务成本,甚至在一些极端应用上(比如无人驾驶)直接关系到个人生命财产安全。目前 AI 落地面临的挑战主要来源于两方面,一方面是 AI 算法的日新月异,带来了计算量的猛增,从 AlexNet 到 AlphaGo,5 年多的时间里计算量提升了 30w 倍。另一方面是底层硬件异构化的趋势愈发明显,近年来涌现出非常多优秀的架构来解决 AI 计算力问题。推理引擎的首要任务就是将性能优异且计算量庞大的深度学习框架快速部署到不同的硬件架构之上,并且能够保持性能相对高效。然而纵观开源社区和闭源解决方案,没有任何一款推理引擎可以同时满足开源、跨平台、高性能三个特性。因此,我们结合百度实际业务的需求、百度优秀工程师的研发能力以及行业合作伙伴的大力支持共同完成了百度自己的推理引擎 Anakin v0.1.0。Anakin 目前支持 Intel-CPU、NVIDIA-GPU、AMD-GPU 和 ARM 平台,后续将支持更多平台如寒武纪、比特大陆等。今天 Anakin 正式开源,期望能够借助社区的力量把 Anakin 打造的更加精美!

二、 Anakin 架构

图 1  Anakin 框架

Anakin 框架的核心逻辑如图 1 所示,主要由 Parser, Framework 和 Saber 组成。Parser 是独立解析器,用于将不同训练框架生成的模型转化为统一的 Anakin 图描述。Framework 是框架主体,使用 C++ 实现,用于完成硬件无关的所有操作,比如构建网络、图融合、资源复用、计算调度等。Saber 是一个高效的跨平台计算库,包括大量的汇编级优化代码,并支持众多国际行业合作伙伴的架构,如 Intel-cpu,NV-gpu,AMD-gpu 和 ARM 等,同时以后还将支持寒武纪 MLU100 和比特大陆 BM1682 这两款优秀的国产芯片。

三、 Anakin 功能特性

Anakin v0.1.0 具有开源、跨平台、高性能三个特性,它可以在不同硬件平台实现深度学习的高速推理功能。Anakin 在 NV、Intel、ARM 和 AMD-GPU 架构上,体现了低功耗、高速预测的特点。

1. 支持众多异构平台 - 跨平台

Anakin 广泛的和各个硬件厂商合作,采用联合开发或者部分计算底层自行设计和开发的方式,为 Anakin 打造不同硬件平台的计算引擎。目前 Anakin 已经支持了多种硬件架构,如 Intel-CPU、NVIDIA-GPU、AMD-GPU、ARM 等,未来将会陆续支持比特大陆、寒武纪深度学习芯片等等不同硬件架构。我们希望 Anakin 可以为用户提供更灵活的底层选择,更方便简单的部署方式,并在不同底层硬件上达到最优性能。

2. 高性能

Anakin 在众多硬件平台都有很好的性能收益, 本文列举了一些实验对比测试数据,更详尽的数据请参见: https://github.com/PaddlePaddle/Anakin/tree/developing/benchmark

  • 在 NV 架构上,我们选择 Anakin v0.1.0、TensorRT v3.0.0、Tensorflow v1.7.0 和 Caffe v1.0.0 进行了对比,具体的对比结果如图 2 所示。

图 2 Public model on NV

测试平台 Nvidia-P4 信息:

  • GPU Architecture NVIDIA Pascal™
  • Single-Precision Performance 5.5 TFLOPS
  • GPU Memory 8 GB
  • 在 Intel 架构上,我们选取 Tensorflow-v1.8.0 进行对比,具体的对比结果如图 3 所示。

图 3 Anakin and Tensorflow on CPU

测试平台信息:

  • i7-7700:Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
  • 2650-v4:Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
  • 2620-v4:Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
  • 在移动端 ARM 上,我们选取 Tensorflow-lite 进行对比,具体的对比结果如图 4 所示:

图 4 Anakin and TFlite on ARM

测试平台信息:

  • 荣耀 v9(root): 处理器: 麒麟 960, 4 big cores in 2.36GHz, 4 little cores in 1.8GHz
  • 高通 835, 4 big cores in 2.36GHz, 4 little cores in 1.9GHz
  • 在 AMD-GPU 架构上,我们选取 Anakin-v0.1.0 进行横向对比,具体的对比结果如图 5 所示:

图 5 MI8 and P4 on VGG16 model

测试平台信息:

MI8: AMD Radeon Instinct MI8

  • single-Precision Performance 8.192 TFLOPS
  • GPU Memory 4 GB

P4: GPU Architecture NVIDIA Pascal™

  • Single-Precision Performance 5.5 TFLOPS
  • GPU Memory 8 GB

图 5 中的折线图表示 MI8 和 P4 的执行效率的相对比例,具体的计算公式:

P4_Latency * P4_TFLOPS / (MI8_Latency * MI8_TFLOPS);

从图上的折线可知 Anakin 在 MI8 和 P4 上执行效率非常接近,在 Thread_num 大于 2 时 Anakin_MI8 效率更高。

3. 汇编级的 kernel 优化

Anakin 追求的目标是极致,因此它提供了一套基于 NVIDIA GPU SASS 汇编级优化的库。SASS 库支持多种(如 sm61,sm50)NVIDA GPU 架构的汇编实现的 conv 和 gemm 的核心计算。由于和 NVIDIA 商业保密协议规定,目前只能开源编译好的 SASS 库

四、Anakin 值得一提的技术亮点

  • 轻量的 dashboard

Anakin v0.1.0 框架中的 Parser 提供了一个额外的小功能,可以让开发者查看 Anakin 优化前后的网络结构及参数,如图 6 和图 7 所示。这样有助于开发者方便的分析模型。同时,在优化后的 Anakin 执行图中会添加相应的优化标记,主要包括 memory 复用、op 融合、并行度分析、执行顺序分析、存储器使用以及同步标记等。例如,在图 7 中,对于标记了 New 标签的地方,在代码运行过程中,将只会对这些内容分配内存。这种处理方式将使得 Anakin 运行时所需的 memory 更少。

图 6 优化前的网络结构图

图 7 优化后的网络结构图

  • Anakin-lite 轻量的移动端版本

Anakin 还提供了在移动端运行的轻量版本 anakin-lite, 我们借助上层图优化机制,帮助深度学习模型 code 自动生成,针对具体模型自动生成的可执行文件,并且结合针对 ARM 专门设计的一套轻量接口,合并编译生成模型的 lite 版本。

Anakin-lite 保持精简化,全底层库大小经过剪裁只有 150K 左右,加上自动生成的深度学习模型模块,总大小在 200K。模型参数不再采用 protobuf 而是精简的 weights 堆叠的方式,尽可能减小 model 尺寸。同时,anakin-lite 依然保有上层 anakin 框架的优化分析信息(比如存储复用等),最终可以做到内存消耗相对较小,模型尺寸相对精简。

  • Anakin 多层次的应用

第一个层次:Anakin 可以是一个计算库;

第二个层次:Anakin 可以是一个独立的推理引擎;

第三个层次:Anakin 可以通过 Anakin-rpc 构建一个完整的推理服务。

五、Anakin 的发展前景

Anakin v0.1.0 具有开源、跨平台、高性能三个特性,它可以在不同硬件平台实现深度学习的高速推理功能。对于每个开发厂商,仅仅使用一套 Anakin 框架,就能在不同的硬件服务器上实现快速推理。

Anakin 的终极目标是帮助实际业务模型快速迭代和上线,为深度学习模型产业化落地扫清障碍,从而让广大的工程师更专注算法设计,从繁重的优化和工程中解脱出来,进而推动深度学习的哪怕一点点的进步,这就是我们最大的愿望。

2018-07-31 19:003726
用户头像
蔡芳芳 InfoQ 总编辑

发布了 851 篇内容, 共 629.4 次阅读, 收获喜欢 2826 次。

关注

评论 1 条评论

发布
暂无评论
发现更多内容

【经验分享】如何融合CMMI与企业需求,自定义推进数字化转型

嘉为蓝鲸

DevOps 敏捷 持续交付 CMMI 能力成熟度模型

最最新版钱包tok量化区块链挖矿系统源码

luluhulian

资本市场发展趋势学习笔记

JiangX

28天写作

带你了解TCP/IP,UDP,Socket之间关系

赖猫

socket udp TCP/IP

高并发高性能服务器是如何实现的?

赖猫

c++ 高并发 linux开发 服务器开发 多线程高并发

Elasticsearch Document 查询内部原理

escray

七日更 28天写作 死磕Elasticsearch 60天通过Elastic认证考试 2月春节不断更

京东扫描平台EOS—JS扫描落地与实践

京东科技开发者

大前端

收购环信、因Clubhouse股价飙升30%,

ToB行业头条

智汇华云 | ArSDN之多集群简介

华云数据

华云数据

官宣|焱融科技完成1.2亿元A+轮融资

焱融科技

分布式 存储 焱融科技 企业融资 创业公司

混合云的五个优势

混合云

android开发手册apk!Android开发者跳槽指南终获offer

欢喜学安卓

android 程序员 面试 移动开发

并发队列:ArrayBlockingQueue实际运用场景和原理

叫练

阻塞队列 LinkedBlockingQueue 并发队列 阻塞List ArrayBlockingQueue

【LeetCode】双指针反转字符串

Albert

算法 LeetCode 2月春节不断更

你需要的Docker知识点都在这里了。

后台技术汇

28天写作 2月春节不断更

webpack | 进阶用法4:如何进行构建速度和体积分析

梁龙先森

大前端 webpack 28天写作 2月春节不断更

android开发实战!面试的时候突然遇到答不上的问题怎么办?Android校招面试指南

欢喜学安卓

android 程序员 面试 移动开发

火出圈的Clubhouse,究竟有什么奥秘?

拍乐云Pano

flutter RTC 语音聊天室 社交APP出海 clubhouse

KubeEdge@MEC:Kubernetes容器生态与5G的结合

华为云开发者联盟

5G 边缘计算 网络 kubeedge 5G MEC

DCache 分布式存储系统|Key-Value 缓存模块的创建与使用

TARS基金会

nosql 微服务 MySQL 高可用 分布式数据储存 TARS

深入理解JVM中的类加载机制

Simon郎

JVM

SpringBoot 接口幂等性的实现

xcbeyond

Spring Boot Java、 幂等性 28天写作

盘点软件开发中那些有趣的边际效应

架构精进之路

认知提升 七日更 28天写作 2月春节不断更

解读|2020年CNCF云原生调研报告

焱融科技

容器 云原生 存储 cncf

浏览器同源策略,听说过么?

华为云开发者联盟

浏览器 jsonp CORS 同源策略 跨域

区块链矿机挖矿游戏开发,区块链矿机游戏开发

v16629866266

2天完成17TB数据量迁移,华为云数据库是如何做的?

华为云开发者联盟

数据库 mongodb 大数据 智慧地图 地理信息服务

腾讯基于 Flink SQL 的功能扩展与深度优化实践

Apache Flink

flink

程序员成长第二篇:如何快速入门

石云升

程序员 28天写作 2月春节不断更

怎么和小伙伴语音连麦,你造吗?

anyRTC开发者

ios android WebRTC sdk 语音通话

C/C++后台开发需要点亮哪些技能树||(鹅厂为例) Linux百里

赖猫

c++ Linux 后台开发 linux开发 服务器开发

百度跨平台AI推理加速引擎:Anakin_百度_蔡芳芳_InfoQ精选文章