写点什么

Intel 开源深度学习库 BigDL:Non GPU on Spark

  • 2017-02-03
  • 本文字数:1803 字

    阅读完需:约 6 分钟

Intel 开源了基于 Apache Spark 的分布式深度学习框架 BigDL。BigDL 借助现有的 Spark 集群来运行深度学习计算,并简化存储在 Hadoop 中的大数据集的数据加载。

BigDL 适用的应用场景主要为以下三种:

  1. 直接在 Hadoop/Spark 框架下使用深度学习进行大数据分析(即将数据存储在 HDFS、HBase、Hive 等数据库上);
  2. 在 Spark 程序中 / 工作流中加入深度学习功能;
  3. 利用现有的 Hadoop/Spark 集群来运行深度学习程序,然后将代码与其他的应用场景进行动态共享,例如 ETL(Extract、Transform、Load,即通常所说的数据抽取)、数据仓库(data warehouse)、功能引擎、经典机器学习、图表分析等。

运行于 Spark 集群上 Spark 是被工业界验证过的,并有很多部署的大数据平台。BigDL 针对那些想要将机器学习应用到已有 Spark 或 Hadoop 集群的人。

对于直接支持已有 Spark 集群的深度学习开源库,BigDL 是唯一的一个框架。

BigDL 可以直接运行在已有 Spark 集群之上,和 Spark RDD, DataFrame/DataSet 直接接口,不需要额外的集群数据加载,从而大大提高从数据抽取到深度学习建模的开发运行效率。用户不需要对他们的集群做任何改动,就可以直接运行 BigDL。BigDL 可以和其它的 Spark 的 workload 一起运行,非常方便的进行集成。

BigDL 库支持 Spark 1.5、1.6 和 2.0 版本。BigDL 库中有把 Spark RDDs 转换为 BigDL DataSet 的方法,并且可以直接与 Spark ML Pipelines 一起使用。

Non GPU on Spark

BigDL 目前的测试结果是基于单节点 Xeon 服务器的(即,与主流 GPU 相当的 CPU),在 Xeon 上的结果表明,比开箱即用的开源 Caffe,Torch 或 TensorFlow 速度上有“数量级”的提升,最高可达到 48 倍的提升(Orders of magnitude ,up-to 48X today)。而且能够扩展到数十个 Xeon 服务器。

为什么创建一个默认情况下不使用 GPU 加速的深度学习框架?对于英特尔来说,它是促进下一代 CPU 机器学习的策略的一部分。

Spark 传统上不是一个 GPU 加速的产品,虽然目前 IBM 和 Databricks(于去年底)有在自己的集群上增加支持 GPU 加速的 Spark 服务;其实使用 GPU 也将是一种趋势。从另一方面来说,BigDL 是给开发者的一个福利,理论上,使用现有软件会比移植到 GPU 架构上的工作量小很多。比如说英特尔采用 GPU-a PCIe 附加卡的形式封装了 Xeon Phi 处理器,由 Xeon Phi 插件卡组成的系统可以通过简单地更换或添加卡来升级或扩展,而不用更换整个机架。

性能上的优化措施

与使用 GPU 加速来加速过程的其他机器学习框架不同,BigDL 使用英特尔数学内核库(Intel MKL)来得到最高性能要求。在性能提高策略上,它还针对每个 Spark task 使用了多线程编程。

对于模型训练,BigDL 使用了在多个执行器中执行单个 Spark 任务的同步小批量 SGD(Stochastic Gradient Descent)。每个执行器运行一个多线程引擎并处理一部分微批次数据。在当前版本中,所有的训练和验证数据都存储到存储器中。

BigDL 使用 Scala 开发,并参考了 Torch 的模型。像 Torch 一样,它有一个使用 Intel MKL 库进行计算的 Tensor 类。Intel MKL(Math Kernel Library)是由一系列为计算优化过的小程序所组成的库,这些小程序从 FFT(快速傅立叶变换)到矩阵乘法均有涉及,常用于深度学习模型训练。Module 是另一个从 Torch 借鉴而来的概念,它的灵感来自 Torch 的 nn package。Module 代表单独的神经网络层、Table 和 Criterion。

易用性上的优化

BigDL 的 API 是参考 torch 设计的,为用户提供几个模块:

  1. Module: 构建神经网络的基本组件,目前提供 100+ 的 module,覆盖了主流的神经网络模型。
  2. Criterion:机器学习里面的目标函数,提供了十几个,常用的也都包含了。
  3. Optimizer:分布式模型训练。包括常用的训练算法(SGD,Adagrad),data partition 的分布式训练。

用户只需定义好模型和目标函数,就可以放到 Optimizer 里面去训练。对于数据预处理,BigDL 提供了一个叫 Transformer 的接口封装,并且提供了很多图像、自然语言处理方面的预处理算法的实现。另外还提供很多示例程序,让用户了解怎么使用 BigDL。例如怎么训练模型,怎么和 Spark 其它模块一起工作。

BigDL 提供了一个 AWS EC2 镜像和一些示例,比如使用卷积神经网络进行文本分类,还有图像分类以及如何将在 Torch 或 Caffe 中预训练过的模型加载到 Spark 中进行预测计算。来自社区的请求主要包括提供对 Python 的支持,MKL-DNN(MKL 的深度学习扩展),faster-rcnn,以及可视化支持。

2017-02-03 18:003975
用户头像
Tina InfoQ高级编辑

发布了 887 篇内容, 共 516.2 次阅读, 收获喜欢 2850 次。

关注

评论

发布
暂无评论
发现更多内容

android开发手册apk!Android开发者跳槽指南终获offer

欢喜学安卓

android 程序员 面试 移动开发

高并发高性能服务器是如何实现的?

赖猫

c++ 高并发 linux开发 服务器开发 多线程高并发

LeetCode题解:69. x 的平方根,牛顿迭代法+递归,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

备战金三银四,”吊打各厂面试官“ ,为你准备了这份堪称“神作”的Java面试宝典

Java架构之路

Java 程序员 架构 面试 编程语言

DCache 分布式存储系统|Key-Value 缓存模块的创建与使用

TARS基金会

nosql 微服务 MySQL 高可用 分布式数据储存 TARS

官宣|焱融科技完成1.2亿元A+轮融资

焱融科技

分布式 存储 焱融科技 企业融资 创业公司

混合云的五个优势

浪潮云

混合云

黄际洲获CCF优秀博士学位论文奖 搜索推荐技术创新成果显著

爱极客侠

学习感恩

谷鱼

程序员成长第二篇:如何快速入门

石云升

程序员 28天写作 2月春节不断更

京东扫描平台EOS—JS扫描落地与实践

京东科技开发者

大前端

带你了解TCP/IP,UDP,Socket之间关系

赖猫

socket udp TCP/IP

深入理解JVM中的类加载机制

Simon郎

JVM

收购环信、因Clubhouse股价飙升30%,

ToB行业头条

C/C++后台开发需要点亮哪些技能树||(鹅厂为例) Linux百里

赖猫

c++ Linux 后台开发 linux开发 服务器开发

非科班Java面试快手三面,如果不是疫情,offer已经到手了

Java架构之路

Java 程序员 架构 面试 编程语言

硬盘的秘密

yes

机械硬盘

怎么和小伙伴语音连麦,你造吗?

anyRTC开发者

ios android WebRTC sdk 语音通话

webpack | 进阶用法4:如何进行构建速度和体积分析

梁龙先森

大前端 webpack 28天写作 2月春节不断更

解读|2020年CNCF云原生调研报告

焱融科技

容器 云原生 存储 cncf

大厂面试算法到底有多重要?学会这份算法宝典,随便暴打头条面试官!

Java架构之路

Java 程序员 架构 面试 编程语言

5 个最值得注意的开源集中式日志管理工具

程序员石磊

Linux 日志 性能监控 日志监控

拆散的乐高怎么装起来

李小腾

你需要的Docker知识点都在这里了。

后台技术汇

28天写作 2月春节不断更

资本市场发展趋势学习笔记

JiangX

28天写作

SpringBoot 接口幂等性的实现

xcbeyond

Spring Boot Java、 幂等性 28天写作

Linux-Lab 入门:详细步骤分解

贾献华

Linux 嵌入式 Linux Kenel 开发板 boot

盘点软件开发中那些有趣的边际效应

架构精进之路

认知提升 七日更 28天写作 2月春节不断更

android开发实战!面试的时候突然遇到答不上的问题怎么办?Android校招面试指南

欢喜学安卓

android 程序员 面试 移动开发

【盘点2020】连续8个月霸榜,年度最佳公有云竟然是它?

博睿数据

Intel开源深度学习库BigDL:Non GPU on Spark_语言 & 开发_Tina_InfoQ精选文章