QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

Facebook 强一致性键值存储 ZippyDB 架构简介

  • 2021-10-11
  • 本文字数:1684 字

    阅读完需:约 6 分钟

Facebook强一致性键值存储ZippyDB架构简介

Facebook 工程团队最近发布了一篇博客文章,阐述了如何构建其通用的键值存储的,也就是 ZippyDB。ZippyDB 是 Facebook 最大的键值存储,已经投入生产环境超过了六年的时间。它为应用程序在各个方面提供了灵活性,包括可调整的持久性、一致性、可用性以及低延迟保证等方面。ZippyDB 的使用场景包括分布式文件系统的元数据、用于内部和外部目的的事件计数,以及用于各种应用特性的产品数据。


Facebook 的软件工程师 Sarang Masti 对创建 ZippyDB 的动机进行了深入分析:


ZippyDB 使用RocksDB作为底层的存储引擎。在 ZippyDB 之前,Facebook 的各个团队都直接使用 RocksDB 来管理他们的数据。这导致每个团队在解决类似的挑战时造成了工作的重复,比如一致性、容错、故障恢复、副本以及容量管理等。为了解决这些不同团队的需求,我们创建了 ZippyDB,以提供一个高度持久化和一致性的键值数据存储,通过将所有的数据转移到 ZippyDB 上并解决管理这种数据相关的挑战,大大提升了产品开发的速度。


一个 ZippyDB 部署(叫做“tier”)由分布到全世界范围多个区域(region)的计算和存储资源组成。每个部署都以多租户的方式托管多个用例。ZippyDB 会将属于某个用例的数据划分为分片(shard)。根据配置,它会跨多个区域为每个分片创建副本,从而实现容错性,这个过程可以使用Paxos或异步副本来实现。



图片来源:https://engineering.fb.com/2021/08/06/core-data/zippydb/


每个分片副本的子集都是某个quorum组的一部分,在这里数据会被同步复制,从而能够在出现故障的时候提供高持久性和可用性。如果以 follower 的形式配置了其他副本的话,将会采用异步复制的方式。Follower 能够让应用程序拥有多个区域内的副本以支持宽松一致性的低延迟读取,同时能够保持较小的 quorum 大小以实现更低的写入延迟。这种分片内副本角色配置的灵活性能够让应用程序根据自身的需要平衡持久性、写入的性能和读取的性能。


ZippyDB 为应用程序提供了可配置的一致性和持久性等级,它们可以在读取和写入 API 中以可选项的形式进行指定。对于写入来讲,ZippyDB 默认会将数据持久化到大多数副本的 Paxos 的日志中并将数据写入到主 RocksDB 上。这样的话,对于主节点的读取能够始终看到最新的写入。除此之外,它还支持一个更低延迟的快速确认(fast-acknowledge)模式,在这种模式下,在主节点上排队进行副本操作的时候,写入就会进行确认。


对于读取来讲,ZippyDB 支持最终一致、读取自己的写入(read-your-write,该模式指的是系统能够保证一旦某个条目被更新,同一个客户端发起的任意读取请求都会返回更新后的数据,参见该文章的阐述——译者注)和强读模式。“对于‘读取自己的写入’模式,客户端会缓存服务器在进行写入时得到的最新序列号,并且会在随后的读取查询中使用该版本号”。ZippyDB 在实现强读取的时候,会将读取操作路由到主节点上,从而避免与 quorum 进行对话。“在某些极端的情况下,主节点尚未得到更新的消息,这时候对主节点的强读就变成了对 quorum 的检查和读取。”



图片来源:https://engineering.fb.com/2021/08/06/core-data/zippydb/


ZippyDB 支持事务和条件性的写入,从而能够适用于要对一组键进行原子读取-修改-写入操作的使用场景。Masti 介绍了 ZippyDB 的实现:


所有事务在分片上默认是序列化的,我们不支持更低的隔离级别。这简化了服务器端的实现,并且便于在客户端推断出并行执行事务的正确性。事务使用乐观并发控制来探测和解决冲突,作用原理如上图所示。


ZippyDB 中的分片,通常被称为物理分片或 p 分片,是服务器侧的数据管理单位。应用程序将其核心空间(key space)划分为μshard(微分片)。每个 p-shard 通常托管着几万个μshard。根据 Masti 的说法,“这个额外的抽象层允许 ZippyDB 在客户端不做任何改变的情况下透明地重新分片(reshard)数据”。

ZippyDB 利用Akkio实现 p-shard 和μshard 之间的映射,从而得到了进一步优化。Akkio 将μshard 放置在信息通常被访问的地理区域。通过这种方式,Akkio 有助于减少数据集的重复,这样就为低延迟访问提供一个比在每个区域放置数据更有效的解决方案。


原文链接:

ZippyDB: The Architecture of Facebook’s Strongly Consistent Key-Value Store

2021-10-11 20:173590

评论

发布
暂无评论
发现更多内容

Forrester发布中国数据治理生态报告,亚信科技AntDB数据库等四款数智产品入选

亚信AntDB数据库

AntDB AntDB数据库

led显示屏的合理亮度很有必要

Dylan

LED显示屏 全彩LED显示屏 led显示屏厂家

健康信息化不断建设——2022年8月互联网医疗月度观察

易观分析

医疗

数据中台打造企业数据能力组件中心

元年技术洞察

数据中台 SaaS服务应用 PaaS平台化能力

Netty高性能之Reactor模型

C++后台开发

后台开发 reactor 多线程 网络io模型 C++开发

英特尔发力“系统级代工”,为芯片制造带来全新可能

科技之家

边缘计算在视频直播场景的应用与实践

火山引擎边缘云

边缘计算 视频直播 火山引擎边缘计算

AntDB入选《爱分析:2022数据智能厂商全景报告》

亚信AntDB数据库

AntDB AntDB数据库

双非二本程序员,年近30,5年间在大厂中横跳,工资翻了三番

程序知音

Java java面试 后端技术 秋招 Java面试八股文

计算机网络——媒体接入控制——静态划分信道

StackOverflow

编程 计算机网络 9月月更

计算机网络——媒体接入控制的基本概念

StackOverflow

编程 计算机网络 9月月更

AX200NGW//2×2.4GHz 2x5GHz MT7915 MT7975 //AR9582 2x 2 900M 802.11an//network card//wallys

wallys-wifi6

MT7915 AX200NGW AR9223

【redis】Redis cluster是AP架构还是CP架构?

非晓为骁

redis 分布式架构 redis cluster 分布式理论

易观分析对《上海市促进人工智能产业发展条例》的解读

易观分析

人工智能 上海

知识经济时代的基石:知识协同

Baklib

MySQL查询数据库表记录数

源字节1号

一文读懂“云游戏”

Finovy Cloud

人工智能 云渲染 云游戏

千亿流量并发治理!Alibaba实战Sentinel笔记,为微服务保驾护航

Geek_0c76c3

Java 数据库 开源 程序员 架构

区块链商城dapp系统开发,代币模式定制

开发微hkkf5566

企业知识管理怎样做?一些解决方案分享!

Baklib

javascript 高级编程 之 Array 用法总结

hellocoder2029

Vue

仅靠一文便火爆全网!开源阿里绝密800页JDK源码笔记:霸榜GitHub

Geek_0c76c3

Java 数据库 程序员 架构 开发

SaaS时代,您的企业与团队需要知识管理工具

Baklib

AntDB数据库与鼎甲科技完成产品互认证,共筑数据安全防线

亚信AntDB数据库

AntDB AntDB数据库

计算机网络——点对点协议PPP

StackOverflow

编程 计算机网络 9月月更

架构三原则学习心得

Jack

架构 #架构训练营

架构---作业1

李某人

架构实战营

存储资源盘活系统,“盘活”物联网架构难题(上)

天翼云开发者社区

分布式系统中自适应统计信息收集策略

KaiwuDB

数据中台与数据平台有什么区别?

雨果

数据中台 数据平台

为什么说企业需要实施知识管理?

Baklib

Facebook强一致性键值存储ZippyDB架构简介_语言 & 开发_Eran Stiller_InfoQ精选文章