Microsoft Build 下一站:中国👉6月15日12:30开启! 了解详情
写点什么

移动深度学习:人工智能的深水区

  • 2019-11-28
  • 本文字数:3817 字

    阅读完需:约 13 分钟

移动深度学习:人工智能的深水区

百度 APP 团队长期致力于在移动平台应用人工智能技术,近两年得到快速发展,百度 APP 中的 AI 体验也重新定义了很多行业的用户体验,而这仅是开始。


随着 5G 商用大规模落地,以及智能手机硬件性能越来越强、AIoT 设备的快速普及,基于云-边缘-端算法和算力结构的移动端人工智能,仍有非常大的发展空间,亟待我们快速理解移动端深度学习的原理,掌握如何将其应用到实际业务中。



在互联网行业中,在移动端应用深度学习技术的案例越来越多。从深度学习技术的运行端来看,主要可以分为下面两种:


一种是完全运行在移动端,这种方式的优点显而易见,那就是体验好。在移动端高效运行神经网络,用户使用起来会感觉没有任何加载过程,非常流畅。前面的“拾相”和手机百度中的图像搜索都属于这一流派,还有其他一些比较好的应用,典型的如识别植物花卉的 App“识花”。


另一种是在服务器端运行深度学习技术,移动端只负责 UI 展示。在第一种流派出现之前,绝大部分 App 都是使用这种在服务器端运算、在移动端展示的方式的。这种方式的优点是实现相对容易,开发成本低。

植物花卉识别

花卉识别的 App 近两年来颇多,“识花”是微软亚洲研究院推出的一款用于识别花卉的 App,如下图所示,用户可以在拍摄后查看花卉信息,App 会给出该类花卉的详细相关信息。精准的花卉分类是其对外宣传的一大亮点。



识花 App

奇妙的风格化效果

将计算机视觉技术应用在 App 中,可以为图片实现滤镜效果。使用深度学习技术实现的风格化滤镜效果非常魔幻。例如,Philm 这款 App 就可以提供非常出色的体验,它使用了深度学习技术,有不少风格化滤镜效果,下面第一张图是原图,第二张是增加滤镜效果之后的图。



Philm 的滤镜效果展示


除此之外,还有许多产品也尝试了在移动端支持视频、图片的风格化,如 Prisma 和 Artisto 这两款 App 也都可以实现风格化的效果。

视频主体检测技术在 App 中的应用

深度学习技术在移动端的应用越来越多,视频主体检测技术在 App 中的应用也在加速。目前,手机使用视频主体检测技术进行身份认证已经是非常普遍的事。视频主体检测技术主要根据物体的特征来进行判别,整个流程(如识别和监测这样的操作)包含大量的神经网络计算。下图是我们团队在 2017 年做的一个 Demo,它通过实时识别视频中的图像主体,再通过该区域进行图像搜索,就可以得到商品、明星等多种垂直分类相关图片的信息。



移动端视频播放器中的视频主体检测效果


你可能会问,这一功能的意义是什么?直接来看,我们可以利用此技术为视频动态添加演员注解,并且动态支持“跳转到 xxx(某个明星的名字)出现的第一个镜头”这样的命令。扩展来看,我们还可以思考一下这一功能实现商业化的方式可能有哪些。例如,假设某个女士看到视频中出现了她喜欢的包包,但是不知道在哪里能够买到。使用了视频主体检测技术后,可以让用户自行筛选,然后在视频中自动提示包包的产地、品牌等信息,甚至可以让用户直接购买。这样就能扩展出非常多的移动 AI 场景。



在移动端应用深度学习技术,要考虑各种机型和 App 指标的限制,因此难点较多。如何使深度学习技术稳定高效地运行在移动设备上是最大的考验。拆解落地过程中的复杂算法问题,就是移动端团队面临的首要挑战。

在服务器端和移动端应用深度学习技术的难点对比

通过对比服务器端的情况,更容易呈现移动端应用深度学习技术的难点,对比如下表所示。



表:在服务器端和移动端应用深度学习技术的难点对比


在移动端 App 的开发过程中,需要克服以上所有困难,才能在移动端应用相关技术。将 Demo 的演示效果转化为亿级安装量的 App 线上效果,并不是一件容易的事情。在移动端和嵌入式设备的 App 中使用深度学习技术,可以大大提升 App 给用户带来的体验。但是,只应用深度学习技术还不能实现所有想要的效果,往往还要结合计算机视觉相关的技术,才能解决从实验到上线的难题。工程师需要具备很高的将工程与算法结合的能力,才能综合运用多种技术解决问题。在移动端应用深度学习技术时,往往没有太多可以查阅和参考的资料,需要开发人员活学活用,因地制宜。接下来通过实例看一下,如何使用诸多办法来实现 AR 实时翻译功能。

实现 AR 实时翻译功能

AR 实时翻译能够实现所见即所得的翻译效果,什么意思呢?来看下面的实例,在下图中,电脑屏幕上有“实时翻译”四个字,将其放在百度 App 图像搜索实时翻译框中,就能得到“Real-Time translation”,而且手机上的文字和电脑屏幕上的文字具有同样的背景色和字色。



实时翻译效果图


AR 实时翻译功能最早在 Google 翻译软件中应用并上线,Google 使用了翻译和 OCR(图片转文本)模型全部离线的方式。翻译和 OCR 离线的好处是,用户不联网也能使用实时翻译功能,且每帧图像在及时处理运算后实时贴图,以达到即视效果。


但是全部离线的方式也有弊端,那就是 OCR 和翻译模型体积较大,且需要用户下载到手机中才可以使用。另外离线 OCR 和离线翻译模型压缩体积后会导致准确率降低,用户体验变差:Google 翻译 App 中的词组翻译效果较好,在翻译整句和整段时表现就不够理想。


2017 年下半年,笔者参与并主导了百度 App 中的实时翻译工作的落地。在开始时,团队面对的首要问题是,翻译计算过程是使用服务器端返回的结果,还是使用移动端的本地计算结果?如果使用移动端的计算结果,用户就不需要等待服务器端返回结果,能够减少不必要的延迟。我们只需要针对移动端的 OCR 和翻译的计算过程,在移动端做性能调优,即可保证每一帧图像都可以快速贴图。移动端性能优化技术其实是我们更擅长的。这样看来,似乎使用移动端计算结果的优点很多,但是其缺点也不容忽视——长文本可能出现“不说人话”的翻译效果。经过分析和讨论,我们回到问题的本质:AR 实时翻译的本质是要给用户更好的翻译效果,而不是看似酷炫的实时贴合技术。


最后,我们选择了使用服务器端的返回结果。下图就是上线第一个版本后的试用效果,左边是原文,右边是融合了翻译结果和背景色的效果。



实时翻译效果图


上图中的效果,如果从头做这件事,应该如何拆解过程?


首先,需要将文本提取和翻译分成两部分;接着,拿到翻译结果后,还需要找到之前的位置,准确地贴图。依次介绍如下:


§ OCR 提取文本


  1. 需要把单帧图片内的文本区域检测出来。a. 检测文本区域是典型的深度学习技术范畴,使用检测模型来处理。b. 对文本区域的准确识别决定了贴图和背景色的准确性。

  2. 要对文本的内容进行识别,就要知道写的具体是什么。a. 识别文本内容需要将图像信息转化为文本,这一过程可以在移动端进行,也可以在服务器端进行。其原理是使用深度学习分类能力,将包含字符的小图片逐个分类为文本字符。b. 使用的网络结构 GRU 是 LSTM 网络的一种变体,它比 LSTM 网络的结构更加简单,而且效果也很好,因此是当前非常流行的一种网络结构。


§ 翻译获取


  1. 如果是在移动端进行文本提取,那么在得到提取的文本后,就要将文本作为请求源数据,发送到服务器端。服务器端返回数据后,就可以得到这一帧的最终翻译数据了。

  2. 请求网络进行图像翻译处理,移动端等待结果返回。


§ 找到之前的位置


当翻译结果返回后,很可能遇到一个类似“刻舟求剑”的问题:在移动端发送请求并等待结果的过程中,用户可能移动了手机摄像头的位置,服务器端返回的结果就会和背景脱离关系,从而无法贴合到对应的位置,这是从服务器端提取结果的弊端。解决这一问题需要使用跟踪技术。


a. 需要用一个完整的三维坐标系来描述空间,这样就能知道手机现在和刚才所处的位置。


b. 需要倒推原来文本所在位置和现在的位置之间的偏移量。


c. 在跟踪的同时需要提取文字的背景颜色,以尽量贴近原图效果。文字和背景的颜色提取后,在移动端学习得到一张和原文环境差不多的背景图片。


d. 将服务器端返回的结果贴合在背景图片上,大功告成。


下图是我们团队在初期对 AR 实时翻译功能进行的技术拆解,从中可以看到,在移动端进行 AI 创新,往往需要融合使用深度学习和计算机视觉等技术。



实时翻译流程图


如果你看过 AR 实时翻译的案例后仍然觉得晦涩,请不要着急,等学过移动端的机器学习、线性代数、性能优化等后,就会觉得明朗许多。



(点击封面下链接,了解详情)


https://item.jd.com/12719274.html


移动深度学习需要克服模型压缩、编译裁剪、代码精简、多平台支持、汇编优化等诸多挑战,本书正是基于作者在此过程中的实战经验。首先介绍基础的数学原理和深度学习模型,然后深入移动计算设备的体系结构,以及如何在这种体系结构上进行高效的深度学习计算。

关 于 内 容

本书由浅入深地介绍了如何将深度学习技术应用到移动端运算领域,书中尽量避免罗列公式,尝试用浅显的语言和几何图形去解释相关内容。本书第 1 章展示了在移动端应用深度学习技术的 Demo,帮助读者建立直观的认识;第 2 章至第 4 章讲述了如何在移动端项目中应用深度学习技术;第 5 章至第 8 章的难度略大,主要讲述如何深入地调整框架,适配并定制自己的框架。本书适合移动端研发工程师阅读,也适合所有对移动端运算领域感兴趣的朋友阅读。


作者介绍:


李永会,百度 App 移动研发部资深工程师。2015 年起在百度从事图像搜索和语音搜索客户端研发工作,主持了多个重要创新项目,包括百度 Lens、实时翻译等。同时负责开源移动端深度学习框架 Paddle-Lite 的开发,长期从事移动端 AI 高性能计算优化工作,在多种软硬件平台上高性能运行深度学习技术。在工作之余有读史、书法等爱好。


本文转载自百度 App 技术。


原文链接:


https://mp.weixin.qq.com/s/rPxT87BIJLs3cnVp-SpnoA


2019-11-28 08:002600

评论

发布
暂无评论
发现更多内容

ARTS 打卡计划-1

语霖

带你换个角度理解图卷积网络

华为云开发者联盟

神经网络 卷积神经网络 图神经网络 卷积 图网络

超视频化到来,你能看见什么?

阿里云视频云

阿里云 计算机视觉 音视频 视频 视频云

IPFS挖矿值得投资吗?IPFS挖矿前景如何?

Git工作流中常见的三种分支策略:GitFlow、GitHubFlow和GitLabFlow

华为云开发者联盟

git 软件开发 工作流 GitFlow GitHubFlow

官宣!DataPipeline2021数据管理与创新大会将于7.29北京重装开启!

DataPipeline数见科技

大数据 数据融合 数据管理

Rust从0到1-并发-线程

rust 线程 并发 Thread Concurrency

建立对分布式锁的系统认知-从Redlock开始

刘绍

程序员 分布式 分布式锁 RedLock redisson

IPFS算力挖矿排行榜,IPFS挖矿公司排行榜

牙膏踩爆!Intel 5nm工艺曝光:直逼IBM 2nm

E科讯

手写QuickSort算法

实力程序员

程序员 算法 成长 C语言

EasyRecovery深度扫描以恢复桌面遗失数据的方法

淋雨

EasyRecovery 文件恢复 硬盘数据恢复

索信达首席科学家张磊:以AI创新技术满足金融场景的“私人定制”

索信达控股

大数据 数字化转型 银行数字化转型

对话系统简介与OPPO小布助手的工程实践

OPPO小布助手

人工智能 对话 智能助手 智能对话

工业互联网赋能 浪潮云洲助力区域品牌“走出去”

浪潮云

工业互联网

架构之:REST和RESTful

程序那些事

微服务 软件架构 程序那些事

如何打造高效好用的终端?拿来吧你!

童欧巴

大前端 iterm2 Oh My Zsh

什么是网络单纯型算法

华为云开发者联盟

算法 线性规划 网络单纯型 计算矩阵

Jira 要停售本地私有化部署的版本了,这对国产项目管理软件是机会吗?

万事ONES

项目管理 Atlassian Jira ONES

对产品来说,颜值、体验是不是很重要?

石云升

用户体验 职场经验 7月日更

Go 学习笔记之 方法

架构精进之路

Go 语言 7月日更

模块八:课后作业

菲尼克斯

架构实战营

微信架构图

Geek_36d3e5

怎么借助Camtasia给电脑游戏录屏

淋雨

视频剪辑 Camtasia 录屏

《面试补习》- 你来说说什么是限流?

九灵

Java 面试 分布式 sentinel 限流

【LeetCode】减小和重新排列数组后的最大元素Java题解

Albert

算法 LeetCode 7月日更

Vue进阶(幺零六):子组件处理父组件异步值传递给子组件处理

No Silver Bullet

Vue 组件 监听 7月日更

Vue进阶(幺捌伍):动态设置系统字体

No Silver Bullet

Vue 7月日更 字体设置

图解堆排序,带你彻底了解清楚!

程序员的时光

Java 面试 算法 排序算法 堆排序

Python OpenCV 霍夫(Hough Transform)直线变换检测应用

梦想橡皮擦

7月日更

【Flutter 专题】86 初识状态管理 Bloc (一)

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 7月日更

移动深度学习:人工智能的深水区_语言 & 开发_百度App技术_InfoQ精选文章